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ABSTRACT

This thesis presents a unified framework for studying coherent acceptability

indices in a dynamic setup.

We study dynamic coherent acceptability indices and dynamic coherent risk
measures. In particular, we establish a duality between them. We derive representa-
tion theorems for both dynamic coherent acceptability indices and dynamic coherent
risk measures in terms of so called dynamically consistent sequence of sets of proba-

bility measures.

In addition, we present an alternative approach to study dynamic coherent

acceptability indices and the representation theorem.

Finally, we provide examples and counterexamples of dynamic coherent ac-

ceptability indices, and their applications in portfolio management.
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CHAPTER 1
INTRODUCTION

In this introductory chapter we provide the motivation for our research. We
were inspired by some problems pertaining to financial risk management, where one
needs to assess potential rewards vis-a-vis potential losses associated with any finan-

cial investment process, or financial portfolio management process.

A financial portfolio is a collection of investment assets held by professional
institutions or individuals. The assets in the portfolio may include money market
accounts, stocks, bonds, forwards, futures, options, swaps and other synthetic or
hybrid financial products. In modern finance, a portfolio is becoming more and more
complex, consisting of various classes of assets, and the complexity requires advanced

mathematical tools to manage it successfully.

Any financial portfolio gives rise to various cash flows that are typically dis-
tributed in time. Such cash flows will be referred to as cash flow stream. In general,
there are two important concepts concerned with a cash flow stream: “return” and

“risk”.

Portfolio managers are responsible for selecting investment assets for their
portfolios. The composition of a portfolio typically changes in time. It is important
to assess quality of a portfolio mix as time progresses not only ex—post, but also
ex—ante. Our research will contribute to handle this problem by providing precise

mathematical measures to differentiate or rank various portfolios.

Traditionally, in the area of optimal portfolio selection, utility functions are
used to discriminate between portfolios, or, in other words, to assess quality of the
portfolio vis-a-vis the chosen utility funtion. Utility functions however suffer from

certain disadvantages, that make their use of limited value, given one wants to as-



sess performance of a portfolio looking at portfolio’s return versus portfolio’s risk. In
particular, it does not seem to be possible to interpret classical measures of financial
performance, such as Sharpe ratio or Gain-to-Loss ratio, in terms of utility functions.
The study presented in this thesis, is in fact meant to begin mathematical investiga-
tion of abstract form of classical financial measures of performance in the context of

dynamic investment processes.

Return on investment (ROI), relative to a given portfolio, is a measure of how
profitable a cash flow stream is. One classical ROI is simple return, which is defined
as the relative change in the value of a portfolio over a specified time horizon. For a

comprehensive discussion of classical ROIs we refer to [26].

Typical ROIs do not account for the riskiness of the portfolio. Consequently, an
investment manager does not assess the quality of her/his investment strategy solely
based on analysis of a ROI. An appropriate measure of riskiness of the portfolio, or

of portfolio risk, needs to be accounted for as well.

Developing good and useful measures of portfolio risk has become an impor-
tant research activity over the past several years, both in academia and in financial
industry (cf. [17, 23, 27, 36, 10, 48]). Advanced mathematical tools are usually needed
to handle the complex distribution of the cash flow stream, and hence to measure the
risk. An overview of the mathematics of (static) risk measures will be given in chapter

2.

Generally speaking, higher return implies higher risk. The risk tolerance for a
portfolio is usually limited. Hence, portfolio managers are typically concerned with
finding satisfactory balance between return and risk associated with an investment
process when making decisions. Various measures have been developed to quantify

this balance. Such measures are typically referred to as performance measures or



measures of performance (MOP).

A classical MOP, widely used in the financial industry, is the Sharpe Ratio
(SR) introduced by Sharpe in [46]. It is defined as SR := w if E[R — R¢] > 0
and 0 otherwise, where R is the portfolio return, Ry is the risk-free rate, E[R — Ry|
is the expected value of the excess return R — Ry, and o is the standard deviation of

the excess return.

SR is expressed as a ratio of expected excess return to standard deviation,
and thus in financial applications it measures expected excess return of a portfolio in
units of portfolio’s standard deviation. SR is therefore used to characterize how well
the return of an asset compensates the investor for the risk taken, and as a classical

tool to rank portfolios. The higher the SR is, the better the portfolio performs.

However, SR has some well-documented weaknesses. The major drawback of
SR is that it uses standard deviation to quantify risk. The reason of course is that
positive returns also contribute to this measure of risk. To eliminate this unwanted
feature, other ratio-types MOPs were proposed after SR, such as Sortino Ratio (SOR)
(cf. [47]), Gain Loss Ratio (GLR) (cf. [5]) and Risk Adjusted Return on Capital
(RAROC) (cf. [34]):

Definition 1.0.1. Sortino Ratio is defined as follows:
=X if E[X]>0,
0, otherwise ,

where X denotes the portfolio excess return R — Ry and X~ = max{—X,0}. By

convention, SOR(0) = 400, where 0 stands for no cash flows.



Definition 1.0.2. Gain Loss Ratio is defined as the ratio of the mean excess return

to the expectation of the negative excess return:

ies! if E[X]>0
GLR(X) := { "]
0, otherwise ,

where X denotes the portfolio excess return R — Ry and X~ = max{—X,0}. By

convention, GLR(0) = 400, where 0 stands for no cash flows.

Definition 1.0.3. Risk-Adjusted Return on Capital is defined as the ratio of the mean
excess return to some selected risk measure p:

X if E[X] >0,
RAROC(X) :=

0, otherwise ,
where X denotes the portfolio excess return R — Ry. By convention, RAROC(X) =

+o0 if p(X) < 0.

We note that the above MOPs focus on downside risk, which makes them more

attractive as compared with the Sharpe ratio.

All the MOPs mentioned above share some common desirable features: they
are unit-less, they are increasing functions of return and decreasing functions of risk;
moreover, according to these MOPs diversification of a portfolio improves its perfor-
mance'. This observation inspires a natural study of MOPs in a unified mathematical

framework.

Recently, Cherny and Madan [14] originated an effort to provide a mathemat-
ical framework to study these measures in a unified way. The study of [14] was done

in static, one-time period setup. Cherny and Madan coined the term Acceptability

1See Proposition 2.1.1 for a strict formulation



Index (AI) as a mathematical terminology for MOPs. Our research goal is to ele-
vate the mathematical framework for studying Als to dynamical, multi-period setup,
where cash flows are considered as random processes, and one needs to assess their
acceptability consistently in time. In particular, we are concerned not just with the
total cumulative terminal value of the cash flow stream as seen from the initial time
of the investment process, but also with all remaining cumulative cash flows between

each intermediate time and the terminal time of the investment process.

As a parallel research, we also contributed to the extension of static risk mea-
sures to dynamic setup. It will be seen that there is a strong duality relationship
between acceptability indices and risk measures in both static and dynamic frame-
works. It should be also mentioned that the theory we developed here covers dynamic

versions of some classical MOPs, and it is not just a theory in itself.

The rest of the thesis is organized as follows: A survey of framework for
studying static coherent acceptability indices (SCAIs) will be presented in Chapter
2 following Cherny and Madan [14]. In Chapter 2 we shall also provide a brief sur-
vey of these aspects of the theory of static coherent risk measures (SCRMs) that
are relevant for this thesis. Next, in Chapter 3, we shall extend the static theory of
Chapter 2 to dynamic framework; in particular, we shall present the duality between
dynamic coherent acceptability indices (DCAIs) and dynamic coherent risk measures
(DCRMs). The major result, a representation theorem for DCAISs in terms of dynam-
ically consistent sequence of sets of probability measures, will be derived in Chapter
4. Another important result — the representation theorem for DCRMs — will also
be presented in Chapter 4. In Chapter 5 we introduce an alternative way to de-
fine dynamic coherent acceptability indices; indices derived in this way are termed
alternative dynamic coherent acceptability indices (ADCAIs), and we provide the

corresponding representation theorem. The study done in this chapter is based on



theory of DCRMs developed by Riedel in [42]. Finally, in Chapter 6, we discuss some
examples of DCAISs, and their applications. In particular, we show that dGLR, which
will be defined in Chapter 6, is a DCAI but is not an ADCAL

The results of Chapter 3 and Chapter 4 are to be published in a paper (cf.

[6]) that is in revision for Mathematical Finance.



CHAPTER 2

STATIC THEORY: COHERENT ACCEPTABILITY INDICES AND RISK
MEASURES

In this chapter, we review the theory of static coherent acceptability indices
(SCAISs), developed in [14], and we review the theory of static coherent risk measures

(SCRMs) originated in [3].
2.1 SCAIs and SCRMs

We assume a finite probability space (2, F,P). As a matter of fact, for risk
measure theory, many results can be extended to an arbitrary probability space, but
the proofs become very technical. For acceptability index theory, we work within
finite probability space. The extension to general probability space is part of future

work.

We denote by G the space of all bounded random variables on (€2, F,P). The
random variable X € G can be regarded as the total cumulative terminal value of
a cash flow stream. We denote by P the set of all probability measures absolutely
continuous to the reference probability measure P. In addition, throughout this thesis,
R denotes the set of all real numbers and N denotes the set of all natural numbers

without number 0.

2.1.1 Definition. A risk measure is a function p : G — R, whereas an acceptability
index is a function a : G — [0, +00]. Risk measure is used to determine the amount of
possible loss at the end of investment period. Hence, it is in dollar unit and should be
valued in R. However, acceptability index is understood as the degree of acceptability
of a cash flow; in a sense, it represents a measure of efficiency of the cash flow. A
larger index indicates better performance, with a(X) = +oco for X being an ‘arbitrage

opportunity’” and a(X) = 0 for X being a ‘surely loss’ portfolio. Acceptability index



is therefore an ordinal and unitless concept, which can be valued on the extended

positive half of the real line [0, +o0].

Acceptability index and risk measure as such are too broad concepts, and
they may not fulfill certain practically desirable properties. That is why researchers
focused their attention on more specific concepts of the coherent acceptability index

and coherent risk measure.

Definition 2.1.1. A function « : G — [0, +0o0] is called static coherent acceptability

index if the following properties are satisfied:

(S1) Monotonicity. If X <Y, then a(X) < a(Y);
(S2) Scale invariance. For every X € G and A > 0, a(AX) = a(X);

(S3) Quasi-concavity. If a(X) >z, a(Y) > = for some x € (0, +0o0], then

aAX +(1=MNY) >z for all X € [0,1];

(S4) Fatou Property. If |X,| < 1, a(X,) > x for alln > 1, and X,, — X, as

n — 00, in probability, then a(X) > z.

The above properties have natural financial interpretation. For example, (S1)
states that if Y dominates X at every state w € €, then Y is acceptable at least at
the same level as X is; (S2) implies that cash flows with the same direction of trade
have the same level of acceptance. Quasi-concavity (S3) implies that a diversified
portfolio improves the performance of its components; to see this, it is enough to
take x = min{a(X), a(Y)}. Fatou Property (S4) is a technical continuity property,
which is used for constructing the duality between coherent acceptability indices and

coherent risk measures.

Proposition 2.1.1. SR, SOR, GLR and RAROC all satisfy (S3)-quasi-concavity.



Proof. We only show that SR and SOR are quasi-concave. GLR and RAROC have
been verified to be quasi-concave in [14]. For convenience, denote by X and Y excess

returns for two arbitrary portfolios.

First, we show that SR is quasi-concave. If SR(X) > = and SR(Y) > « for

some x > 0, by the definition of SR, we can see that E[X] > 0, E[Y] > 0, and

SR(X) = E[X] >z, SR(Y) = % > .

If o(X)=0o0ro(Y)=0,then X or Y will be a positive constant. In this case,
by the properties of standard deviation, we can verify that SR(AX + (1 — \)Y) =
EDXTAMYL > 4 for all A € [0, 1].

Y
cAX+(1-N)Y)

If both o(X) > 0 and o(Y) > 0, then for all A € [0,1],
EAX + (1 - AY] = AE[X] + (1 = VE[Y] > 2Aa(X) + 2(1 = No(Y).  (2.1)
Let p be the correlation between X and Y, then —1 < p < 1 and
FPAX +(1=NY)=0’(AX) +*((1 = N)Y) +2p5(AX)o ((1 — N)Y)
<*(AX)+* (1= NY) +20(AX)o((1 = N)Y)
= (a()\X) +o((1- )\)Y))z,

which implies that o (AX +(1—=\)Y) < c(AX)+0o((1-N)Y) = Ao (X)+ (1= N)a(Y).
Then, (2.1) gives

EAX + (1= N)Y] > 20(AX + (1= ))Y).

In addition, we have E]AX + (1 = \)Y] = AE[X] + (1 — A)E[Y] > 0. By the definition

of SR,
SROAX + (1= \)Y) = 15’8))? i 8 — igg > .

This concludes the proof that SR is quasi-concave.
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By Cauchy-Schwarz inequality, we have

YT < VE[XPE[(Y )Y

Then, by the similar way for SR, SOR can be proved quasi-concave with the following

fact:
(WEIX+ (1 = MVE[(Y )
=NE[(X )Y + (1 = N2E[(Y )Y + 201 - MVE[(X [(Y-)?]
>SNE[(X )]+ (1= A)E[(Y7)?] + 2A(1 = ME[X Y]
:E[(AX‘ +(1— A)Y‘)Q] > E[((AX +(1- A)Y)‘)Q] .
O
Now we shall introduce the definition of static coherent risk measures origi-
nated in [3].

Definition 2.1.2. A function p : G — R is called static coherent risk measure if the

following properties are satisfied:

(R1) Monotonicity. If X <Y, then p(X) > p(Y);

(R2) Positive homogeneity. For every X € G and A > 0, p(AX) = Ap(X);

(R3) Translation property. For every X € G and ¢ € R, p(X +¢) = p(X) —¢;

(R4) Subadditivity. For every X € G andY € G, p(X +Y) < p(X) + p(Y).
Monotonicity (R1) implies that higher cash flow stream Y should have lower

risk. Positive homogeneity (R2) indicates that scaling a portfolio will also scale its

risk. (R3) means that if an investor adds or subtracts a deterministic amount of

cash into the portfolio, the risk will be reduced or increased by the same amount.



11

Subadditivity (R4) is the diversification property, which agrees with the well-known
investment principle that a diversified portfolio has lower risk. Note that, (R2) and
(R3) together imply that a portfolio with a deterministic future cash flow ¢ € R has

risk —c.

The theory of static risk measures has been explored and extended by many
researchers; to mention just a few of them: Félmer and Schied [29, 30] generalized the
concept of SCRMs to static convex; law-invariant risk measures have been investigated
by Kusuoka [39]; for a systematic discussion on static risk measures we refer reader

to the monographs by Delbaen [20] and Folmer and Schied [31].

Many researchers have also contributed to the extension of risk measure theory
to dynamic framework, see for instance [4, 9, 11, 12, 13, 18, 32, 33, 37, 42, 44, 50].
Our first research result, which is named alternative dynamic coherent acceptability
indices (ADCAIs), is established on the DCRMs theory by Riedel in [42]. Riedel’s

theory will be shown in Appendix A, and ADCAIs will be presented in Chapter 5.

Now we show the duality between SCRMs and SCAIs. This is one of the main

contribution by Cherny and Madan in [14].

Theorem 2.1.1. An unbounded above function o : G — [0, +00| is a SCAI if and only
if there exists an increasing family of SCRMs (p®)ze(0,400), Such that p*(X) < p¥(X)

for all X € G with x <y, and
a(X) =sup{z € (0,400) : p*(X) <0}, (2.2)

where inf ) = oo and sup () = 0.

This theorem indicates that every SCAI can be characterized in terms of an

increasing family of SCRMs (p”)ze(0,400), and vice versa.

2.1.2 Examples. We will introduce some examples of static risk measures. A
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traditional and popular risk measure being used in financial industry is Value at Risk
(VaR) (cf. [24, 35]), defined as VaR,(X) := inf{c € R | P[X + ¢ < 0] < a} for
a € (0,1). It can be verified that VaR does not satisfy subadditivity (R4), and

therefore is not a SCRM.

Based on VaR, researchers proposed Tail Value at Risk (TVaR) (cf. [2]),
defined as TVaR,(X) := —infgeg, Eg[X], for a given « € (0, 1], where Q, is the set
of probability measures absolutely continuous with respect to P such that dQ/dP <

a~ L.

It is well-known that TVaR is a SCRM. Intuitively, VaR differs from TVaR
that it only indicates in what probability the loss will exceed a certain amount without

knowing how bad it is, whereas TVaR measures how bad the loss will be.

Next, we discuss several examples of static coherent acceptability indices.
First, note that Sharpe Ratio does not satisfy the monotonicity (S1), and hence
it is not a static coherent acceptability index. Gain Loss Ratio, however, is verified to
be a SCAI by Cherny and Madan in [14]. They also showed that RAROC is a static

coherent acceptability index, if coherent risk measure is selected to define RAROC.

The Duality Theorem 2.1.1 provides another way to construct examples for
static coherent acceptability indices. For example, since TVaR is a static coherent
risk measure, we define AIT as AIT(X) := sup{z € (0, 4+00), TVaRH%(X) < 0}. By
the Theorem 2.1.1, it is a static coherent acceptability index. More examples such as
AIW, AIMIN, AIMAX, AIMINMAX, AIMAXMIN etc, have been also presented in
[14].

2.2 Set of Probability Measures and Representation Theorems

In this section, we shall discuss how to represent both static coherent risk

measure and static coherent acceptability index in terms of set of probability mea-
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sures. Mathematically, it provides abstract and uniform formulas to study SCRMs
and SCAIs; practically, it also endows them with a straightforward financial meaning

by regarding each probability measure as a market scenario or condition.

The Standard Portfolio Analysis of Risk (SPAN) system is a popular measure
for assessing portfolio risk. It was developed and implemented by Chicago Mercantile
Exchange (CME) in 1988. Since then, it has become the industry standard and has

been adopted by most options and futures exchanges over the world.

SPAN evaluates overall portfolio risk by calculating the worst possible loss that
a portfolio may have, given sixteen different scenarios or market conditions. Artzner
et al in [3] provides a detailed example regarding the SPAN computation, and shows
that the calculation can be viewed as producing the maximum of the expected loss

under each of sixteen probability measures.

This methodology, however, allows users to extend to any number of scenarios
to meet their particular needs. In the mathematical model, a collection of scenarios
is understood as a set of probability measures. Therefore, we can extend SPAN to

define a risk measure given any specific set of probability measures (scenarios).

Definition 2.2.1. Given any non-empty set of probability measures (scenarios) Q,

define po as follows
po(X) = —inf{Eg[X] : Qe 9Q}.

It can be shown that pg is a SCRM. It is called risk measure with respect to the set

Q of probability measures.

The risk defined above has a straightforward financial meaning, which claims
that given a set of probability measures (market scenarios), the risk is simply the

negative value of minimum expectation under the specified set. It is actually the worst
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condition a portfolio manager can expect under a certain set of scenarios regarding

market change.

One of the greatest results in modeling risk measure theory is that any coherent
risk measure can be represented by a set of probability measures (scenarios), which

leads to the following representation theorem in [3]:

Theorem 2.2.1. A function p: G — R is a coherent risk measure if and only if
p(X) = —inf{Eg[X] : Qe Q}, (2.3)

for a certain set Q of probability measures absolutely continuous with respect to P.

The above representation theorem is established in [3] for finite €2, and gener-

alized to a general probability space in [21].

It is worth to mention that representation theorem does not imply a one-to-
one map. That is, there may exist two different sets of probability measures, which
give rise to the same coherent risk measure by (2.3). As a matter of fact, it can be
verified that any set of probability measures and its closed convex hull generate the

same coherent risk measure.

Definition 2.2.2. In a real vector space V', for any subset X C V', the convexr hull
X of X is defined as follows:

XC:{Z)\ll'l’.TlEX,/\lER,)\>O,Z)\Z:1},
=1 =1
where n can be an arbitrary natural number.

Proposition 2.2.1. Let Q be a subset of P. Denote the closed convex hull of Q by
Q°. We have

inf Eg[X] = inf Eg[X
dnf Bo| X] = inf EolX],

for all X € G. Hence, Q and QF generate the same coherent risk measure defined by

(2.3).
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Proof. We observe that Q is a subset of its closed convex hull Q°, and thus

inf Eg[X] > inf Egl[X].

dnf EolX] 2 inf FolX]
The converse inequality will be verified in two steps. First, we consider Q¢
the convex hull of Q. For any Q, € Q¢, by the Definition 2.2.2, there exists
Ql,QQ, SR ,Qn such that Qo = Z?:l )\z(@z with A; > O, and Z:’L:l A= 1. HGHCG,

by the linearity of expectation,

for any X € G. Then, by Lemma B.0.1, we conclude that

inf Egl[X]| > inf Eg|X]. 2.4
onf, EqlX] = inf EqlX] (2.4)
Next step, note that Q¢ is the closure of Q°, then for any Q, € QF, there

exists a sequence (Qq,Qy, - --) with each Q, € Q° such that
lim Q, = Q.

Since we are in finite probability space, the above limit is state-wise. By the linearity

of expectation and finiteness of the probability space,

lim Eq, [X] = Eq,[X].

n—oo

for all X € G. Then, Eq,[X] > inf Eg[X]. By Lemma B.0.1,
QeQ

inf Eg[X]> inf EglX].
oto FelX] 2 irf, EolX]
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Together with (2.4), we get

inf Eg[X]> inf Eg[X].
oo EolX] > inf EolX]

Finally, we conclude that, for any X € G,

inf Eg|X] = inf Eg|[X].
QeQc Q[ ] QeQ Q[ ]
By the Definition 2.2.1, Q and Q% must generate the same coherent risk

measure. O

We will extend this proposition to dynamic framework in Chapter 4, which
is essential to verify the representation theorem for dynamic coherent acceptability

indices.

We conclude this chapter by presenting the representation theorem for SCAIs
(cf [14]). This is a direct result of Duality Theorem 2.1.1 and Representation Theorem
2.2.1 for SCRMs.

Theorem 2.2.2. An unbounded above function o : G — [0, +0o0] is a SCAI if and
only if there exists an increasing family (Dy)zec0,400] 0f sets of probability measures,

such that D, C Dy for x <y, and o admits the following representation
a(X) =sup {x € (0,+00) : nggz Ep[X] > 0} , (2.5)
where inf ) = oo and sup () = 0.
The representation theorem indicates that any SCAI can be characterized by

an increasing family of sets of probability measures. On the other hand, given any

increasing family of sets of probability measures, we can define a SCAI through (2.5).
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CHAPTER 3

DYNAMIC COHERENT ACCEPTABILITY INDICES AND DYNAMIC
COHERENT RISK MEASURES

In this chapter, we introduce the theory of dynamic coherent acceptability
indices (DCAIs). We start with presenting the mathematical framework, and then
proceed to the properties used to define DCAIs. As a parallel research, we also study
dynamic coherent risk measures (DCRMs), as well as the duality between DCAIs and
DCRMs.

3.1 Mathematical Preliminaries

Typically, in dynamic framework, new market information is updated as time
moves forward. The new information may include underlying assets price movement,
new economic policies or political events etc. The dynamic acceptability indices
should be able to assess performance of the cash flow stream accounting for the

newly acquired information.

Note that one may attempt to use a sequence of static (one-period) acceptabil-
ity indices. However, by doing this one may end up with a sequence of measurements
that are not consistent in time and contradict the updated information, in the sense
to be explained below (cf. Property D7). The motivation for developing a theory of
DCAIs was to provide performance measurements consistently in time and compatible

with the information process.

To avoid technical problems, we consider a finite probability space (€2, F,P)
and finite time horizon 7 = {0,1,2,...,T}. The finiteness of probability and time
space is a good starting point to carry out research on DCAIs. Analogous to static
theory, the proofs will become very technical if we extend to an arbitrary probability

space and continuous time.
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We assume that the reference probability measure P is of full support. In the
finite probability space, this assumption is used to eliminate the irrelevant states.
Throughout the rest of the thesis, we adopt the usual? convention that inf ) = oo and

supf) = 0.

To facilitate the proofs in later sections, we introduce the concept of partition

and give some basic results of partition in finite probability space.

Definition 3.1.1. A partition of a probability space €2 is a collection of exhaustive

and mutually exclusive subsets,

{Pi,...,P,}, suchthat PbLONP;=0,Yi#j and Uy_, P, =Q.

In a finite probability space, the algebra of events generated by the partition is
the collection of all unions of P;’s. These sets (P;);=1,..., are the fundamental building
blocks for the algebra. In fact, it has been shown in [38] that in finite probability

space (2, any algebra is generated by a unique partition of 2.

Definition 3.1.2. Algebra F; is said to be included in algebra Fy if F1 C Fa.

If F, is included in F5, the partition that generates F, has finer sets than the

ones that generate Fj.
In dynamic framework, we endow the underlying probability space €2 with the
sequence of algebras, called filtration which models the flow of information.

Definition 3.1.3. A filtration F is the collection of algebras,

F:{fo,fl,...7.7:t,...7.7:T} withﬂcﬂ+1,f0:{®,ﬁ}, G/fld]:T:]:.

As time passes, an observer knows more and more detailed information, that

is, finer and finer partitions of €2, as illustrated in the following corollary that will be

2Same as the convention in Theorem 2.2.2
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applied in the later proofs.

Proposition 3.1.1. For F;, € T, there exists a unique partition of Q, say { P}, P, ..., Pt },

ng
that generates Fr. And for each Pti=1,... ny, there exists {Pffl’ P@'t,—{l, e >Pztj1 ;
which is a subset of the partition that uniquely generates Fyy1, such that P! =
Pzpfl U Pzt—2'_1 U P where j; € N.

2,7 7

Denote by Y* := {P}, P;,..., P! } the unique partition of {2 at time ¢ that
generates F;. Thus, the number of the elements in Y is n;. A cash flow stream is
modeled as a stochastic process instead of random variable. We denote such processes
by D = {D;(w)},, which are adapted to the filtration F. We also denote by D the
set of all bounded stochastic processes. In addition, ¢ will denote a generic constant,
and m will denote a generic random variable. Let X still be a bounded random
variable and G be the space of all bounded random variables on (2, F,P). Finally,
a standing (financial type) assumption, which we make without loss of generality, is

that the interest rates are zero.
3.2 Definition and Properties of DCAIs

Analogous to static theory for SCAIs, we define DCAIs through a set of prop-

erties.

Definition 3.2.1. A dynamic coherent acceptability index is a function
a:T xDxQ—[0,400] that satisfies the following set of properties:
(D1) Adaptiveness. For anyt € T and D € D, ay(D) is Fi-measurable;

(D2) Independence of the past. For anyt € 7 and D,D" € D, if there exists

A e F; such that 14Dy = 14D’ for all s > t, then 1404(D) = 1oy (D");

(D3) Monotonicity. For anyt € T and D, D’ € D, if Dy(w) > D.(w) for all s >t

and w € Q, then ap(D,w) > ap(D',w) for all w € §;
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(D4) Scale invariance. «;(AD,w) = ou(D,w) for all X >0, D € D, t € T, and

w € Q;

(D5) Quasi-concavity. If ay(D,w) > x and ay(D',w) > x for somet € T, w € €,

D,D" €D, and x € (0,400], then ap(AD + (1 — N\)D',w) > x for all X € [0,1];

(D6) Translation invariance. a;(D+mlyy,w) = ay(D+mlygy,w) for everyt € T,

D eD,we, s>t and every Fi-measurable random variable m;

(D7) Dynamic consistency. For any t € {0,1,...,T7 — 1} and D,D' € D, if
Di(w) >0 > Dj(w) for allw € Q, and there exists a non-negative Fy-measurable
random variable m such that a1 (D, w) > m(w) > a1 (D' w) for allw € Q,

then ay(D,w) > m(w) > ay(D’,w) for all w € .

Property (D1) is a natural property in a dynamic setup and it assumes that a

DCALI is adapted to the same information flow {F;} as is any cash flow D € D.

Property (D2) postulates that in the dynamic context the current measurement
of performance of a cash flow D only accounts for future payoffs. To decide, at any
given point of time, whether one should hold on to a position generating the cash
flow D, one may want to compare the measurement of the performance of the future

payoffs (provided by DCALI at this point of time) to already known past payoffs.

Properties (D3)-(D5) are naturally inherited from the static case (cf. Defini-
tion 2.1.1). Translation invariance (D6) implies that if a known dividend m is added
to D at time ¢ (today), or at any future time s > ¢, then all such adjusted cash flows

are accepted today at the same level.

Dynamic consistency (D7) is the key property in the dynamic setup which
relates the values of the index between two consecutive days in a consistent manner.

It can be interpreted from financial point of view as follows: if a portfolio has a
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nonnegative cashflow today, then we accept this portfolio today at least at the same
level as we would accept it tomorrow; similarly, if today’s cashflow is nonpositive the

acceptance level today can not be larger than the level of acceptance tomorrow.

3.2.1 Normality of DCAIs. For both technical and practical purposes, we
introduce another property for DCAIls: normalization. We start from an intuitive

example to illustrate its importance.

Example 3.2.1. Given a non-negative constant ¢ on the extended positive half of the

real line [0, +o0], define a function o : T x D x  — [0,4+00] as follows:

forallt € T,D € D and w € Q. The function « is a constant function. It can be

verified that o 1s a dynamic coherent acceptability index.

However, from practical point of view, o from Example 3.2.1 is not a good
candidate for portfolio performance measurement since it gives a constant value for
all portfolios and thus can not be used as a ranking tool. This example shows the
necessity to normalize DCAIs by requiring that an Al reaches the boundaries 0 and

+00, which in a sense allows to differentiate portfolios.

Definition 3.2.2. A dynamic coherent acceptability index o is called normalized if

for allt € T and w € ), there exist two portfolios D, D’ € D such that
@ (D,w) =400 and ay(D',w)=0.
Note that normalization will exclude the degenerate examples of acceptability
indices such as a constant index over all states, times, and portfolios (Example 3.2.1).

Also, it is reasonable to have that “an arbitrage portfolio” is acceptable at

highest level, whereas a sure loss portfolio should be acceptable at lowest level. It can
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be shown that a normalized index reaches +oo for every strictly positive cash flow
and 0 if the cash flow is strictly negative:

Proposition 3.2.1. If a dynamic coherent acceptability index o is normalized, then

we have,
a(D%%) =400 forc >0, and au(D°) =0 forc <0, forallte T,

where, for any w € Q and s > t, D**(r,w) = ¢ for r = s and zero otherwise.

Proof. First, we show that a;(D**) = 400 for ¢ > 0 and s > t. If not, there exist
¢>0,teT,5>tand @ € Q such that ag(D*,0) < +o00. By (D6) — translation
invariance of «,

(D%, @) = ag( D, @) < +00.
For any positive constant ¢, > 0, we have = > 0. Hence, by (D4) — scale invariance

of a,
ai (D 5) = af( 2D, ) = ap(D, ) < +00. (3.1)
C

Since a is normalized, there exists D € D such that az(D,©) = +oo. Since D is a
bounded process, there exists a positive finite constant ¢y such that for all ¢ € 7 and
w € €,

Dt(CU) S Co .

Define a new process D™V = colyziy1,..1y, we get D,(w) < D% (w) for all s >t and
w € Q. By (D3) — monotonicity of «,
ai(D,w) < ag(D™", ),

for w € Q. Then, (D6), (D4) and (3.1) together imply

aif (D", &) = ai((T — t + 1) D &) = ay( DO, &) < +00,
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which indicates ap(D,@) < +oo. It contradicts the fact ap(D,@) = +oo. Hence, for

allc>0,teT,s>tand w € (Q,

ay (D w) = +o0.

Next, we show that a;(D*) = 0 for ¢ < 0 and s > t. If not, there exists a

c<0,te7,5>tand @ € Q such that
ag (D%, @) > 0.

— c,s

By (D6) — translation invariance of «, az(D*!, ©) = az(D%*, @) > 0. For any negative
constant c_ < 0, we have = > 0. Hence, by (D4) — scale invariance of «,

c

Ozt‘(Dc_’{, w) = af(— DE’E, w) = Oz;(DE’E, w)>0. (3.2)

K
Since « is normalized, there exists D € D such that ag(D,0) = 0. Since D is a
bounded process, there exists a negative finite constant ¢y such that for all ¢t € 7 and
w € €,

Di(w) > ¢ .

.....

w € 2. Then, by (D3) — monotonicity of «,

ar(D,w) > ar(D"", @),
for w € 2. Then, (D6), (D4) and (3.2) together imply
apf(D™, ©) = ai((T — t 4+ 1) D! @) = ag(D, &) > 0,

which indicates az(D,w) > 0. It contradicts the fact az(D,w) = 0. Hence, for all

c<0,teT,s>tand w € (),

a(D**,w) =0,
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Since we are working with a bounded stochastic processes, when adding (with-
drawing) enough large cash to (from) a specific portfolio, the performance level will

reach infinity (zero) index level. The following corollary shows this fact.

Corollary 3.2.1. If a dynamic coherent acceptability index o is normalized, then for

any given D € D and t € T, there exist two finite constants ¢, and ¢; such that,
(D 4 cylyy,w) = 400 and (D + ¢lyy,w) =0,

for all w € Q).

Proof. Given any D € D and t € T, since D is a bounded process, there exists a

finite positive number ¢, such that
| Dy(w)| + 1 < crnax (3.3)

for all s > ¢t and w € Q. Let us define ¢, := (T'—t+1)cmax and ¢; ;= —(T —t + 1) cax.

Then, by (D6) — translation invariance of «,

CYt(D + Cul{t}a C(J) = Oét(D + (T —t+ 1)Cmax1{t}7 (U)
T

= at(D + Z Cmaxl{s},‘ﬂ) .

s=t
Note that for each s € {t,t +1,...,T}, (3.3) gives D, + cmaxlsy = 1. By (D3) -

monotonicity of «,
(D + cylyy,w) > a1y, w), (3.4)
for all w € Q). Since « is normalized, by Proposition 3.2.1,
(L, w) = +00.
Hence, together with (3.4), we get

Oét(D + Cul{t}, w) = +00.
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By (D6) — translation invariance of «,

Oét(D + Cll{t},W) = Oét(D - (T -1+ 1)cmax1{t}7w>

T
= (D — Z Cmax1{s}, W) -

s=t
Note that for each s € {t,t +1,...,T}, (3.3) implies that Dy — cpaxl{sy < —1. By

(D3) — monotonicity of «,
(D +alyy,w) < (=1, w), (3.5)
for all w € Q). Since « is normalized, by Proposition 3.2.1,
o (—1gy,w) = 0.
Hence, together with (3.5), we have

Oét(.D + Cll{t},W) =0.

Next, we will introduce a desired technical property for dynamic setting.

Definition 3.2.3. A dynamic acceptability index o is called right-continuous if

lim oy (D + clpy,w) = ay(D,w), forallt € T, D € D, and w € L.

c—0F

It should be noted that Proposition 3.2.1 does not imply the value of a;(0).
In [14], (S4) — Fatou Property would conclude that an unbounded above SCAI has

the property a(0) = 4o00. Fatou Property is a continuous-type property for SCAIs.

Similar to the Fatou Property, the right-continuous property for DCAIs gives

rise to o (0) = +oo.

Proposition 3.2.2. If a is a normalized and right-continuous dynamic coherent ac-

ceptability indez, then o (0) = 400 for allt € T.
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Proof. If o is normalized, by Proposition 3.2.1,
ay(cly) = 400,
for any positive ¢ > 0 and ¢ € 7. Then, since « is right-continuous,

(0) = lim ay(clyy) = +o0.

c—0t

3.2.2 Dynamic Consistency of DCAIs. Dynamic consistency property plays
a central role in the dynamic theory of both acceptability indices and risk measures.
Generally speaking, a simple generalization of a static measurement into multiple
periods framework, may not satisfy dynamic consistency. Such an example will be

presented in the Chapter 6.

In the following, we define two properties that will be verified to be ‘equivalent’

to (D7) — dynamic consistency.

Definition 3.2.4. For a function o : 7 x D x ) — [0, +00]|, two properties are defined

as follows:

(D7-1) For a givent € {0,1,..., T —1} and D,D’ € D, if Diy(w) = D,(w) = 0 for all
w € §, and there exists a non-negative F;-measurable random variable m such
that oy 11(D,w) > m(w) > a1 (D' w) for all w € Q, then ay(D,w) > m(w) >

a (D' w) for all w € (.
(D7-1I) For a givent € {0,1,..., T —1} and D € D, if Di(w) =0 for all w € Q, then
1a glelgl oth(D,w) < 1A04t(D) <14 glgj{at—Fl(D?w)a

for all A € F.
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We observe that (D7-I) is more restrictive than (D7), that is if a dynamic

acceptability index « satisfies (D7), it also satisfies (D7-I).

Property (D7-11) shows that if a portfolio has a zero value today, then this
portfolio is acceptable at most the maximum level of tomorrow and at least the min-
imum level of tomorrow. From mathematical point of view, it gives both maximum

and minimum of a.

Proposition 3.2.3. If a function o : T x D x Q — [0,+00] satisfies properties
(D2) — independence of the past, and (D3) — monotonicity, then (D7) and (D7-1) are

equivalent.

Proof. (DT7-1) is stronger than (D7), then (D7) implies (D7-I).

Assume « satisfies (D2), (D3) and (D7-1), we will show that « also satisfy (D7).
For D, D' € D, if Dy(w) > 0 > Dj(w) for all w € €2, and there exists a non-negative

Fi-measurable random variable m such that oy (D, w) > m(w) > a1 (D', w) for all

..........

the past of «,

~

04t+1(f)7w) = Oét+1(DaW) and at+1(D',W) = at+1(D/7W>7

for all w € €. Then,

~ ~

Oét+1(D,CU) = at+1(D7w) > m(w> > atJrl(D/aw) = at+1<D/7w) .

~

Since Dy(w) = D'y(w) = 0 for all w € Q, by (D7-I),

A

ay(D,w) > m(w) > ay(D, w). (3.6)

Note that Dy(w) > 0 > Dj(w) for all w € Q, then by the definition of D and D',

D,(w) > Dy(w) and D' (w)> D\(w),
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for all s >t and w € Q. By (D3) and (3.6),

for all w € €. Therefore, (D7) holds true for a. O

Corollary 3.2.2. As a direct result of Proposition 3.2.3, we conclude that the set of

properties (D1)-(D7) is equivalent to (D1)-(D6) and (D7-1).

The next proposition shows the equivalence between (D7-1) and (D7-1I).

Proposition 3.2.4. If « is normalized, then (D7-1) and (D7-11) are equivalent.

Proof. First, we show that (D7-1I) implies (D7-1). For D, D’ € D, if Dy(w) = Dj(w) =
0 for all w € €, and there exists a non-negative F;-measurable random variable m
such that ay1(D,w) > m(w) > a1 (D' w) for all w € €, then we can derive, for
each P! € T,

lprags (D, w) > 1pm(w) = Lprai (D' w).

Denote ¢ := m(w) where w € P, then ¢ is a constant and

. 7 /
lpe min a1 (D, w) 2 1pec® = 1pe max oy (D', w) -
weP; weP;

By (D7-11),
lproy(D) = 1pr min agyq (D, w) = lpic' > 1pe max a1 (D', w) > 1pray(D').
¢ " weP; ¢ " weP] ¢

(3 7

Since the above inequality holds true for all P} € T, we get

a(D,w) > m(w) > a(D',w), Vw e Q.

Next, we show that (D7-I) implies (D7-1I). For any D € D, if Di(w) = 0 for
all w € Q, define D' and m as follows:
D" = —1yinla,

m:= E 1pt min ayqq (D, w) .
" weP!
Plert
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Then, m is a non-negative, F;-measurable random variable, and D;(w) = Dj(w) =0

for all w € €. In addition, since « is normalized, by Proposition 3.2.1,

Lptoyi1(D) > 1p min a1 (D,w) >0 = 1prayq (D),
1 1 weP 1

2

for all Pf € T'. Thus, ayy1(D,w) > m(w) > a1 (D', w) for all w € Q. By (D7-1),
since D;(w) = Dj(w) = 0 for all w €
(D, w) > m(w) > (D', w) .

Then, for all A € F;, by the definition of m,

laag(D) > 14 mi;ll a1(D,w) .
we

On the other hand, we define D" and m as follows:

D' :=1gyi1ylq,
m = Z 1pr max a1 (D, w)
prext T

By analogous argument, for all A € F;, we can verify that
1a max apr1(D,w) > 1aou(D).
we
]

Corollary 3.2.3. Using Proposition 3.2.3 and Proposition 3.2.4 we conclude that, if
a function o : T XD X — [0, +00] is normalized and satisfies (D2) — independence of
the past, and (D3) — monotonicity, then (D7) and (D7-11) are equivalent for function

Q.

3.2.3 Relevancy Property of DCAIs. In dynamic framework, as time passes,
more and more possible states are excluded from happening in the future. Relevancy
implies that the index level at current time ¢ should be irrelevant with those excluded

states.
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We provide alternative properties for both (D3) and (D7) in terms of relevancy.

Definition 3.2.5. For a function o : T xDxQ — [0, +00], two properties are defined

as follows:

(D3-1) For anyt € T, D,D’ € D, if there exists A € F; such that 14Ds > 14D, for

all s > t, then 1404(D) > 14y (D');

(D7-II1) For any t € {0,1,...,T — 1} and D,D’ € D, if there exists A € F, and a
non-negative Fi-measurable random variable m, such that 1,D; > 0 > 14D,

and 1aau1(D) > 1am > 1acu 1 (D), then 1a0q(D) > 1am > 1404 (D).

Proposition 3.2.5. A normalized o : 7 x D x § is a dynamic coherent acceptability

index if and only if it satisfies (D1),(D2),(D3-1),(D4),(D5),(D6) and (D7-11I).

Proof. Sufficiency. It is obvious if A = Q in (D3-I) and (D7-III).

Necessity. All we need to prove is that a dynamic coherent acceptability

index « satisfies (D3-I) and (D7-I1I).

First, we show that « satisfies (D3-I). For D, D" € D, if there exists A € F;

such that 1,D; > 14D’ for s > t, we can define two new portfolios D and D’ such

----------

of a,

Lyay(D) = 1404(D) and  1404(D") = 1404(D").

We observe that 1,415S > 1,415’8 and 1{Q\A}D5 = 1{Q\A}I§’S = 0 for s > t. It implies
D,(w) > D/ y(w) for all w € Q, 5 > t. By (D3), we have ay(D) > ay(D’). Thus,

Laoy(D) = 1404(D) > 140,(D") = 1ac,(D").

Second, we show that « satisfies (D7-I11). For D, D’ € D, if there exists A € F;

such that 1,D; > 0 > 14D;, and a non-negative F;-measurable random variable m
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such that 1acu1(D) > 1am > 11 (D), define m = oy(14411q), and two new

..........

(D2) — independence of the past of «,

~ ~

1AO{t(D) = 1AO[t(D), 1A05t+1(D) = 1Aat+1(D) .
1A04t(l§/) = 1A05t(D/)7 1A05t+1(ﬁ/) = 1A04t+1(D/)-
Then,
Laovir (D) = 1a0441(D) > 1am > 140541(D") = Lacyy1 (D).

By the definition of D and D', together with (D2) and Proposition 3.2.1, we get

A ~

Loy (D) = Liavayaa (D) = 0.
Thus,
CKtJrl([)) 2 1Am 2 OétJrl(ﬁ/) .
Note that D, > 0 > D,. By (D7), we have at(ﬁ) > 14m > at(ﬁ’). Finally, we

conclude that

Laoy(D) = 1404(D) > 1am > 140,(D") = 1acu(D').

As a conclusion of this section, we stress that normality for DCAIs is required
for Proposition 3.2.1, Proposition 3.2.4, Proposition 3.2.5 and their related corollaries.
Later on, we will show that normality is also an important property necessary for most

major results for DCAIs.
3.3 Definition and Properties of DCRMs

As mentioned in Chapter 2, there is a strong relationship between coherent

acceptability indices and coherent risk measures. In fact, as seen from Theorem
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2.1.1, any SCAI « can be represented in terms of a family of coherent risk measures
prox > 0:

a(D) = sup{z € [0,+00) : p“(D) < 0}. (3.7)

Looking at (3.7) one might think that a natural approach to constructing a DCAI
would be to use this representation but to replace the static coherent risk measures in
(3.7) by their dynamic counterpart. The representation (3.15) that we derive below
shows that this is indeed the case. The delicate issue however is, what family of
dynamic coherent risk measures should be used. It turns out that in order to produce
a DCAI satisfying a financially acceptable set of dynamic properties, one needs to
use a carefully crafted family of dynamic coherent risk measures. In this section
we introduce such a family of dynamic coherent risk measures and we compare our
definition of coherent dynamic risk measures with an analogous one that has been

studied in other literature.

Definition 3.3.1. Dynamic coherent risk measure is a function p: 7T x D x Q — R
that satisfies the following properties:
(A1) Adaptiveness. p(D) is F;-measurable for allt € T and D € D;

(A2) Independence of the past. If 14D, = 14D’ for somet € T, D,D" € D, and
A€ F, and for all s > t, then 14p:(D) = 1ap(D’);

(A3) Monotonicity. If Dy(w) > D.(w) for somet € T and D,D" € D, and for all

s>t and w € Q, then py(D,w) < p(D',w) for all w € Q;

(A4) Homogeneity. p(AD,w) = Ap(D,w) for all X\ > 0, D € D, t € T, and

wE Q;

(A5) Subadditivity. p;(D + D' w) < p(D,w) + p(D',w) forallt € T, D,D" € D,

and w € €;
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(A6) Translation invariance. p,(D+mly) = p (D) —m for everyt € T, D € D,

Fi-measurable random variable m, and all s > t;
(A7) Dynamic consistency.
La(min pyy1 (D, w) = D) < 1apy(D) < La(max pe (D, w) = Dy)
for everyt € {0,1,..., T —1}, D€ D and A € F.

In the previous section, we introduced the normality of DCAIs. We now

present the normality of DCRMs.

Proposition 3.3.1. If p is a dynamic coherent risk measure, then py(clsy,w) = —c,

forallceR, teT,we and s > t.

Proof. Given some fixed t € 7 and w € (), denote by A := p;(0,w). Then, by (A6) —

translation invariance of p, we deduce
pt(CL[S}a w) = pt<07 w) —c=A—c, (38)

for all ¢ € R. In particular, for ¢ = 1, we have p;(1{5,w) = A — 1. Hence, by (A4) -

homogeneity of p, it follows that

pe(culsy,w) = cupr(lisy, w)

=c,(A—1), forall ¢, >0.

Combining this with (3.8) we get A — ¢, = ¢, A — ¢y, and consequently \(1 —¢,) = 0.
Since the last equality holds true for arbitrary positive ¢,, we have that A = 0, and

thus p(0,w) = 0. Thus, by (3.8), pi(clisy,w) = p(0,w) —c = —c. O

Note that, in particular, p;(0) =0, for all t € 7.

We want to mention that our definition of DCRM differs from the definition given

in previous studies essentially only by the dynamic consistency property. For sake of
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completeness, we will present here how property (A7) relates to two other forms of

dynamic consistency found in [13] and [42].

(A7-I) Forall timest =0,...,7—1 and positions D, D" € D with D; = D; the following
holds true: p1(D,w) = pry1 (D' w) for all w € Q implies pi(D,w) = p(D',w)

for all w € €Q;

(AT-II) pi(D) = p(Dilgy — pes1(D)1q1y) for all times ¢ = 0,1,...,7 — 1 and positions
D eD.

(A7-I) is the dynamic consistency property for DCRM defined by Riedel [42]. Prop-
erty (A7-II) can be viewed as a dynamic programming principle similar to the dynamic
consistency defined by, for example, Cheridito, Delbaen and Kupper [13]. However,
it should be mentioned that in [13] the set of objects for which the risk is measured
is different from ours, and hence the comparison is rather formal. The objects we are

working with are dividend processes, whereas value processes are considered in [13].

Our approach is closest to the DCRM defined by Riedel [42].

Other researchers also proposed various dynamic consistency properties, see

for instance [4, 7, 8, 22, 25, 28, 43, 49].

Proposition 3.3.2. If a function p : T x D xQ — R satisfies (A1)-(A6), then (A7-1)

is equivalent to (A7-1I).

Proof. First, we show that (A7-I) implies (A7-II). Given a position D € D, we define
another position D := 1;yD — 1y13pe41(D). By (A1) — independence of the past

and (A6) — translation invariance,

pe+1(D) = pri1(— L1y pe1(D)) = pe41(0) + pria (D) = prra(D) -

By the definition of D, we have D, = D,. Therefore, by (A7-I),

(D) = pi(D) = py(Dilgsy — prsa(D)lggrny)



35

Second, we show that (A7-II) implies (A7-I). If D, = D; and p;1(D) =
pr1(D'), we define two new positions D= D1y — pega (D) 141y and D = Dilyy —

pei1(D")1(141y. We can observe that D = D. By (A2) - independent of past, we have

pt(D) = pi(D). Then, (A7-1I) implies,

pi(D) = pi(D) = pi(D) = pi(D").

Finally, (A7-I) holds true. O

Given the risk at time t 4+ 1, we are able to apply dynamic programming
principle to compute the risk at time . The next proposition will show the relationship

of our dynamic consistency and dynamic programming principle.

Proposition 3.3.3. For a function p : T x D x Q — R, if (A1)-(A6) hold true,
(A7-1I) — dynamic programming principle implies (A7). Hence, (A7) is more general
than (A7-1I).

Proof. For all t € {0,1,...,T — 1}, D € D and A € F;, by (A7-II) — dynamic
programming principle, (A6) — translation invariance and (A2) — independence of the

past,

Lape(D) = Lapi(Dily — pra(D)ie11y)
= 1api(=pes1(D)Lgr41y) — 1aDy

= 1APt(—1APt+1(D)1{t+1}) —1aD;.

Define two new positions Dmin and f)max as follows:

Digin i= — 114114 lglelg prr1(D,w),

Dmax = _1t+11A rggf pt+1(D7 (.U) :
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Note that

—1y4 glelg pri1(D,w) > —1api1(D,w),
—lamax (D, w) < ~Lap(D,w).

Together with (A3) — monotonicity, we get
pt(Dmin) < pt(_l{t+1}1APt+1(D)) )

Pt(Dax) > Pt(—l{t+1}1APt+1(D)) :

Since A € F;, we observe that —14 mingea pr1(D,w) is Fi-measurable. Thus, by

(A6) — translation invariance,

Pt(Drmin) = p(0) + 14 gleigpt+1(D7w> =14 glelg pri1(D,w)
pt(Dimax) = pe(0) + 14 max (D, w) = Lymax pp (D, w) .

From all the above, we can derive that

Lapi(D) = 1ape(=1apei1 (D) gr41y) — 1aDy

Z 1Apt(Dmin) - 1ADt
=14 g1€1£1 Pt+1(D,w) — 14Dy
= 1A(Ln€1£1 pre1(D,w) = Dy),

and

Lapi(D) = 1APt(—1APt+1(D)1{t+1}) — 14Dy

S 1Apt(Dmax) - 1ADt

= Lymax pi1(D,w) — 14D,
= 1A(r‘£1éij< pre1(D,w) — Dy).

Finally, (A7) holds true. Hence, we conclude that (A7) is more general than (A7-

11). 0
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Corollary 3.3.1. Using Proposition 3.3.2 and Proposition 3.3.3, we conclude that if
(A1)-(A6) hold true, (A7) is more general than (A7-1).

3.4 Duality between DCAIs and DCRMs

We start this section with several definitions that will be used in the main

results derived in this section.

Definition 3.4.1. A family of dynamic coherent risk measures (p*)zc(0,4+00) @5 called

increasing if pf(D,w) > p(D,w), for allx >y>0,t€ T, D eD andw € (.

Definition 3.4.2. A family of dynamic coherent risk measures (p*)zec(0,+00) 5 called

left-continuous if lim pf(D,w) = p;*(D,w), for allt € T, D € D, and w € Q.

LE—)IO

Theorem 3.4.1. Assume that o is a normalized dynamic coherent acceptability index.

Then, the set of functions p*,x € R, defined by
pi(D,w) :=inf{c € R: ay(D + clyy,w) > x}, (3.9)

forallt € T, D € D and w € ), is an increasing, left-continuous family of dynamic

coherent risk measures.

Proof. First we will show that p* defined by (3.9) is well-defined. Since « is normal-
ized, by Corollary 3.2.1, for all t € 7, D € D, there exist two finite constants ¢, and

¢; such that
(D +cylyy,w) = 400 and  ay(D + ¢lyy,w) =0,

for all w € 2. Hence, for every z € (0, +00), the set {c € R: ay(D + clyy, w) > x} is
not empty, and ¢; < inf{c € R : ay(D + clyy,w) > x}. From here we conclude that

infimum from (3.9) is finite, and hence p* is well-defined.

Next we will show that p*, z € (0, +00), satisfies the properties (A1)-(AT7).
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Fix any P! € T, by (D1)-adaptiveness of a,
(D + clyy,wi) = au(D + clyy, wa) ,
for every t € T, D € D, ¢ € R and every wy,wy; € P!. Hence,
{ceR:a(D+clyy,wi) >} ={ce€R: (D + clyy,wa) >},
for all z € (0,400). Taking the infimum of both sides, we get
inf{c € R: (D + clyyy,wi) > a} =inf{c € R: ay(D + clyyy,we) > x},

which consequently implies that pf(D,w;) = p¥(D,ws) for every wy,ws € P!. Since
the above argument holds true for all P! € T*  we know p} is Fi-measurable and (A1)

is verified.
By (D2) — independence of the past of a, we have that
inf{c € R: ay(D + clyy,w’) > 2} = inf{c € R: ay(D' + clyy,w’) >z},

for any t € T, D,D" € D such that 14D, = 1,4D., for all s > ¢, and for every
w’ € A € F;. From here, by (3.9), we have that pf(D,w°) = pf(D’,w°), hence (A2)

is satisfied for all = € (0, +00).

Next we will prove that p* satisfies (A3). Assume that ¢t € 7 and D, D" € D

are such that Ds(w) > D (w) for all s >t and w € Q. Then, for all ¢ € R,
(D + clyy)s(w) > (D' 4 clgyy)s(w) for s >t and w e Q.
By (D3) — monotonicity of «,
(D + clyy,w) > ap(D' + clyy,w) (3.10)
for all c € R and w € €). From here, we deduce the following inclusion

{ceR:u(D+cly,w) >} D{ceR: a(D +clyy,w) > x}.
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Taking infimum of both sets, by the definition of p*, the monotonicity (A3) follows.

Similarly, the homogeneity of p* follows from the scale invariance of a.

Next we show that p” satisfies (A5). Let t € 7, D, D’ € D and w € , and let

us take ¢, co € R such that
Oét(D—i-Cil{t},u)) > x, 1= 1,2
Then, by (D5) — quasi-concavity of «,

1 1
D'+ —021{t},w) > T,

1 1
-D+ —¢1
+ zalyy + 5 7

(5D + 3

and therefore by (D4) — scale invariance of a, we get oy (D + D'+ (¢1 4 ¢2) 1y, w) > @.

This implies that ¢; +¢; € {c € R: ay(D + D' + cly,w) > x}. Hence,
c+c>inf{ceR:a(D+ D' +clyy,w) >z}
=pi(D+ D w). (3.11)

Note that the above inequality holds true for all ¢; € {¢ € R : ay(D + clyyy, w) > x}
and c3 € {c € R: oy(D' + clyy,w) > x}. By taking infimum in (3.11), first with
respect to ¢q, and then with respect to co, we get the following inequality,

inf{c € R: ay(D + clyy,w) >z} +inf{c € R: ay(D' + clyyy,w) > z}

> pE(D+ D).
By the definition (3.9) of p*, we have, pf(D,w) + pf(D',w) > pf(D + D' w), and
hence (A5) is checked.

Now we will check that p” satisfies (A6), translation invariance. Fix an w® € €,
t € 7, D € D and an F;-measurable random variable m. Denote by P! the unique
element of partition of F; such that w° € P!. This yields that the cash-flows m1yy
and m(w°)1yy agree on the set P!, and for all times s > ¢. Then, for any constant

(2

¢ € R, we have

].p;(D +ml; + Cl{t})s = ].PZ.(D + m(u)o)l{t} + Cl{t})s, for s > t.
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By (D2) — independence of the past of a,
1PZtOét(D +mly+clyy) = 1Pit04t(D + m(wo)l{t} +cly).
Since m is F;-measurable, by (D6) — translation invariance of «,
(D 4+ mls + clyy, W) = a,(D +ml, + cl{t},wo) . for all s >t.
Combining the above with (3.9), we deduce

pf (D +mlgy,w’) = inf{c € R: ay(D + mlgy + clyy,w’) >z}
=inf{c € R: ay(D + mlyy + clyy,w’) > x}
= inf{c € R: ay(D + m(w®) 1y + clyy,w’) > 2}
= inf{m(w’) + c € R: ax(D + (m(w°) + )11}, 0°) > 2} — m(w”)
— pE(D,w) = m(").

0

Since w” is arbitrarily chosen in Q, we obtain pj(D + mlyy) = pf(D) — m, for all

s > t, and (D6) is checked.

Next we will show that p® satisfies (A7), dynamic consistency. Assume that
teT,DeDand A € F are fixed, and denote by 24 = miglpfﬂ(D,w) and
we

min

DA = max p? | (D,w). By the definition (3.9) of p,

max wEA

co < inf{c € R: apy1(D + clyyry,w) > x},
for any ¢y < 2" and w € A. Thus,

a1 (D + colpgy,w) <,

for all w € A. Due to the finiteness of the probability space €2, there exists a number
€a,co > 0, such that oy 1(D + colpgny,w) < @ — €44, for all w € A. By (D2) -

independent of the past of «,

1 (D — Dilgy + colypny,w) = a1 (D + colypyry,w) < & — €a s
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for all w € A. Note that 14(D — Dilyy + colgny)e = La(Dy — Dy) = 0. Since « is a

normalized DCAI, by Corollary 3.2.3, we know that « also satisfied (D7-II). Then,
(D — Dl + colypyry,w) < 1a max app1(D — Dl + colyrgry, @) <@ —€ay
for all w € A. Consequently, since ¢, is a constant, by (D6)
(D + (co — Di)lgy,w) = ap(D — Delyyy + colyy, w)

= (D — Dilgy + colpqay,w)

ST —€pe <,

for all w € A and ¢y < 2. By the definition of P

pf(D,w) =inf{c € R: ou(D + clyyy,w) >} > ¢g — Di(w),

t,D,A
min °

t,D,A

for all w € A and ¢y < ¢ Hence, pf(D,w) > ¢ — Di(w), or equivalently

Lapf(D) > 1a(mingea pf (D, w) — D). Similarly, one can show that 14p7(D) <
La(maxgyea pre1(D,w) — Dy), and thus (A7) is established. All the above imply that

p* is a DCRM for every x > 0.
Assume that £ > y > 0. Then
{ceR:u(D+clyy,w) 22} C{ceR: (D + clyy,w) >y},
which implies implies that
inf{c € R: (D + clyyy,w) > o} > inf{c € R: (D + clyy, w) > y} .
Therefore, by definition (3.9) of p”, we have
pi(D,w) = p{(D,w),

forallt €e T,D € D, w € Q and x > y > 0. Hence, the family of dynamic coherent

risk measures (p%)zc(0,400) 15 NON-decreasing.
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Finally, we will show that (p”).c(0,+00) is left-continuous. Let xq be any positive

number. Then,
{ceR:u(D+clyy,w) >0} C{ceR:ay(D+ clyy,w) > x},
for all z < xy. Taking infimum of both sides, we get
inf{c € R: (D + clyyy,w) > xo} > inf{c € R: (D + clpyy,w) > 2}, (3.12)
By taking the left limit of the right hand side, we have,

inf{ce R: (D + clyy,w) > w0} > lim inf{c € R: oy(D + clyy,w) > x}. (3.13)

T—T(

If the above inequality holds strictly, then there exists a constant ¢y such that,

inf{c € R: (D + clyyy,w) > zo} > co > lim inf{c € R: ay(D + clyyy,w) > x}.

T—T
(3.14)
Note that, by (3.12), inf{c € R: ay(D + clgy,w) > x} is an non-decreasing function
with respect to x. Therefore, the second inequality in (3.14) implies that,

co >inf{c € R: (D + clyy,w) > x},

for all # < x. Hence, by (D3) — monotonicity of a, a;(D + colyy,w) > @, for all
r < xg, and thus

(D + colyy,w) > lim o = x.

T—Ty

On the other hand, by the first inequality in (3.14), we deduce that,
Oét(D -+ Col{t},UJ) < Xp.

Contradiction. Therefore, we should have strict equality in (3.13). O

Next theorem shows the representation of a DCAI in terms of a family of DCRMs.
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Theorem 3.4.2. Assume that (p”)zc(0,400) 95 an increasing family of dynamic coher-

ent risk measures. Then the function « defined as follows,

a(D,w) = sup{z € (0,+00) : pi(D,w) < 0}, (3.15)
fort € T, D € D and w € (), is a normalized, right-continuous, dynamic coherent
acceptability index.

Proof. Note that the assumption sup®) = 0 guarantees that « from (3.15) is well-
defined and takes values in [0, +o0].

In the following, we will prove that « defined in (3.15) satisfies the properties
(D1)—(D7).

(D1) - adaptiveness, and (D2) - independence of the past, follow immediately
from the definition of «, and from adaptiveness (A1) and independence of the past

(A2) of p”.

Let t € 7, D,D" € D, and assume that Ds(w) > D.(w) for all s > ¢, and

w € Q. By (A3) — monotonicity of p*,
pf(D) < pf(D"), forallz>0. (3.16)

Note that, for any zo € {z € (0,+00) : pf(D’,w) < 0}, we have p;°(D’,w) < 0, which

combined with (3.16) implies p;°(D,w) < pi°(D',w) <0, w € Q. Therefore,
{z € (0,400) : pf(D,w) <0} 2 {z € (0,+0) : pf(D',w) <0}
By taking supremum of both sides, we get
sup{z € (0,400) : p}(D,w) < 0} > sup{z € (0,+0) : pf(D',w) < 0},

and hence, by the definition (3.15) of «, property (D3) follows.
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By homogeneity (A4) of p*, for every A > 0,D € D,t € T and w € Q, we

have,

ay(AD,w) = sup{z € (0,+00) : \pj(D,w) < 0}
= sup{z € (0,+00) : pi(D,w) < 0}

=(D,w).
Therefore, « is scale invariant and satisfies (D4).

Next we will prove that « is quasi-concave. For given ¢t € 7, and 2° € (0, +o0],
if D, D" € D are such that ay(D,w) > 2° ay(D’',w) > 2°, then, by definition (3.15)

of o, we have

sup{a € (0,+00) : pf(D,w) < 0} > a”,

sup{x € (0, +00) : pf(D',w) <0} > a".
Using these, and monotonicity of p® in x, we conclude that for any z < 2°,
pi(D,w) <0, pj(D,w)<0.
By (A4), homogeneity of p®, we note that for any A € [0,1] and = < °,

pEAD,w) = Api(D,w) <0,

pE((L= 2D w) = (1= A)p{(D',w) <0.
From here, by (A5), subadditivity of p®, we get
pf()‘D + (1 o A)Dlaw) < pf()\D,w) + ptm((l - )‘)D/7w) <0,

for any x < 2% Hence sup{x € (0,+00) : pf(AD + (1 — \)D',w) < 0} > 2° and
thus, by definition (3.15) of «, we have, a(AD + (1 — A\)D’,w) > xy. This yields

quasi-concavity of a.
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Assume that D € D, and m is an F;-measurable random variable. By (3.15)

and (A6), we get

ay(D +mlggy,w) =sup{x € (0,400) : p;(D + mlgy,w) < 0}
= sup{z € (0,400) : py (D +mly,w) <0}

= O{t(D + ml{t}7W) s
for all s > ¢ and w € €. Hence, « satisfies property (A6).

Now, let us show that « satisfies dynamic consistency property (D7). Assume
that D, D" € D, and t € T are such that Dy(w) > 0 > Dj(w) for all w € 2, and

there exists a non-negative F;-measurable random variable m such that a;1(D,w) >

m(w) > auq1 (D' w) for all w € Q. By definition (3.15),
sup{z € (0,+00) : pi ;1 (D,w) <0} > m(w) > sup{z € (0,+00) : pi 1 (D', w) < 0},

for all w € Q. Let us fix an @ € , and denote by ¢ := m(w). There exists a P} € T*

such that @ € P!. From the above inequality, we conclude that for all w € P},
sup{z € (0,+00) : p{ 1 (D,w) <0} > ¢ > sup{z € (0,+00) : pi,,(D',w) <0},

Then, for all ¢ > ¢ and w € P}, ¢ > sup{z € (0,400) : pf (D', w) < 0}, which

7

consequently implies that
pi (D' w) > 0. (3.17)

Also note that sup{z € (0, +00) : pf,;(D,w) < 0} > ¢, for any ¢ < ¢. By monotonic-
ity of p* with respect to x, we have p§, (D, w) <0, w € P. Due to the finiteness of

2, (3.17) implies that

min pf, (D', w) >0,
weP!

k3
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for all ¢ > ¢. Using (A7), dynamic consistency of p®, we get the following

Lpeg (D) > Lpe (i 5, (D', w) — D))

' weP!

. /
= 1pt min pi(D",w) —1pD;, ¢ >¢.
' wePf ¢

Equivalently,

pi (D', w) > min pf (D', w) = Dj(w) > =Dj(w) >0, (3.18)

weP}

for all w € P}, and ¢ > ¢.

If

¢ < sup{z € (0,400) : p{(D',u') <0},
for some w’ € P}, then there exists a constant ¢ such that
¢ < <sup{z € (0,+0) : pf(D',w') <0}.
This implies that p¢ (D’,w’) < 0, that contradicts (3.18). Therefore,
¢ = sup{z € (0, +00) : pj (D', w) < 0},

and by (3.15), we have
¢>w(D\w), weP. (3.19)

By similar arguments, one can show that

¢<o(Dyw), weP. (3.20)

Since w was arbitrarily chosen, by (3.19) and (3.20), we finally conclude that,

ay(D,w) > m(w) > a(D',w), forall we.

Thus (A7) is checked.

Let us show that « is right-continuous. Givent € 7, D € D and w € (), we
have

{z € (0,+00) : pf(D,w) <0} C {z € (0,400) : py(D,w) < c},
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for any constant ¢ > 0. Taking the supremum of both sides, and then the limit of the

right hand side as ¢ — 0+, we get

sup{z € (0,400) : p;(D,w) <0} < lim sup{z € (0,400) : py(D,w) <c}. (3.21)

c—0t
If the above inequality holds strictly, then there exists z° € (0, +o0) such that
sup{z € (0, +00) : p*(D,w) <0} < 2° < lirél+ sup{z € (0,400) : pf(D,w) < c}.

(3.22)

The second inequality implies that
2% < sup{z € (0, +00) : p¥(D,w) < c}, forall ¢> 0.

By monotonicity of p*, we deduce that pfo(D, w) < c. Since the last inequality holds

true for all ¢ > 0, we have that

p2(D,w) < lim ¢ =0,

c—0t

that contradicts first strict inequality in (3.22). Therefore, we have equality in (3.21).

Using this equality, and (A6), translation invariance of p®, we write

0u(D,w) = supa € (0, +00) : pF(D,w) < 0}
= lim sup{z € (0,400) : p{(D,w) < ¢}
c—0

= lir(r]l+ sup{z € (0,400) : py (D + clyy,w) < 0}

= lim oy(D + clpyy,w),

c—0t

and continuity of « is established.

Finally, we will prove that « is normalized. Given a fixed t € 7, consider the

following cash-positions

Dpos = 1{t}7 Dneg = _1{t} .
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Recall that p,(0) = 0. By (3.15) and (A6), we have

O'/t(Dposaw) = sup{x S (Oa —I—OO) : pf(l{t},w) < 0}
= sup{z € (0,4+00) : p{(0,w) —1 <0}
= sup{z € (0,400) : =1 <0} = +00.

Similarly, one can show that a;(Dyeg, w) = 0.

The proof is complete. O

We conclude this section with two results: one provides a representation of a
DCALI in terms of a family of DCRMs; the other one gives a representation of DCRM

in terms of a DCAI

Theorem 3.4.3. If a is a normalized, right-continuous, dynamic coherent accept-
ability index, then there exists a left-continuous and increasing family of dynamic

coherent risk measures (p*)ze(0,400), such that

ay(D,w) = sup{z € (0, +00) : p{(D,w) < 0}. (3.23)

Proof. For every x € (0,+00), define p® = (pf)]_, as follows,
pi(D,w) :=inf{c € R: ay(D + clyyy,w) > x}, (3.24)

forallt € T, D € D and w € . By Theorem 3.4.1, (p”)zc(0,400) s an increasing,

left-continuous, family of dynamic coherent risk measures. We will show that
(D, w) = sup{a € (0, +50) : pF(D,w) < 0},
forallt e 7,D € D and w € Q.

Fixt € T,D € D, we Q. For all yg > sup{z € (0,+00) : pf(D,w) < 0}, we
have p{°(D,w) > 0. By (3.24), inf{c € R: (D + clyy,w) > yo} > 0, and hence,

(D, w) = ay(D + 01y, w) < yo.
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Since the above inequality holds true for all yo > sup{z € (0,400) : p¥(D,w) < 0},

we conclude that
ay(D,w) < sup{ € (0,+00) : pf(D,w) < 0}.

On the other hand, for all yo < sup{z € (0,+00) : pf(D,w) < 0}, since p is an
increasing function with respect to =, we have p{°(D,w) < 0. By (3.24), inf{c € R :

(D + clyy, w) > yo} < 0, and hence, for all n > 0,
Oét<D,CU) = CYt(D + nl{t},w) 2 Yo -
Since « is right-continuous,

Oét(D,Cd) = lim Oft(D -+ T]l{ﬂ,(,d) 2 Yo

n—07T

Note that the above inequality holds true for all yy < sup{z € (0,+00) : pf(D,w) <

0}, we conclude that
ay(D,w) > sup{z € (0,400) : pj(D,w) < 0}.
Finally, we have that au(D,w) = sup{z € (0,+00) : pf(D,w) < 0}. O

Theorem 3.4.4. If (p”)sc(0,400) 15 @ left-continuous and increasing family of dynamic
coherent risk measures, then there exists a right-continuous and normalized dynamic

coherent acceptability index o such that,

pf(D,w) =inf{c € R: ou(D + clpyy,w) > x},

Proof. Define the function « as follows,
a(D,w) = sup{z € (0,+00) : pf(D,w) < 0}, (3.25)

forall t € 7, D € D and w € ). By Theorem 3.4.2, « is a right-continuous and

normalized dynamic coherent acceptability index.
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We will show that
pi(D,w) =inf{c € R: oy(D + clpyy,w) > x},
for all z € (0,400),t €7,D € D and w € Q.

Fixt € T,D € D, w € Q and 2y € (0,400). For all yg > inf{c € R :
(D + clyyy,w) > o}, we have oy (D + yolyy,w) > 9. By (3.25), sup{z € (0, +0o0) :

P (D + yolyy,w) < 0} > xp, and hence for n > 0,
p" (D + yolgy,w) < 0.

Since p® is a left-continuous function, we have that pf°(D + yolyy,w) < 0. By (A6),
pi°(D,w) < yo. The above inequality holds for all yo > inf{c € R: ax(D +clpy,w) >
xo}. Hence,

p°(D,w) <inf{c € R: ay(D + clyy,w) > o} .

On the other hand, for all yy < inf{c € R : ay(D + clyyy,w) > o}, we have
(D + yolpy,w) < xo. By (3.25), sup{z € (0,+00) : pf(D + yolgy,w) < 0} < wo,
and hence,

P (D + yolyy,w) > 0.

Then, by (A6), pf(D,w) > yo. The above inequality holds for all yy < inf{c € R :

(D + clyy,w) > x0}. Hence,
pi*(D,w) > inf{c € R: ay(D + clyy,w) > o} .

Finally, we have that pf°(D,w) = inf{c € R : ay(D + clysy, w) > 2o} O

We conclude this chapter by summarizing the above four theorems in diagram.

Let us define

Aporm = the set of normalized DCAIs
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Anorm,cont = the set of normalized and right-continuous DCAIs
Riner := the set of increasing families of DCRMs

Riner cont := the set of increasing and left-continuous families of DCRMs

Anorm (3.9) Rincr,cont
U duality N
Anorm,cont (3 1 5) Rincr

Remark 3.4.1.
1. Anorm,cont - Anorm and Rincr,cont - Rincr-

2. A left-continuous, increasing family of DCRMs can be represented by a normal-

ized DCAI through (3.9).

3. A right-continuous, normalized DCAI can be represented by an increasing family

of DCRMs through (3.15).

4. There is duality between right-continuous, normalized DCAIs and left-continuous,

increasing families of DCRMs.



52

CHAPTER 4

CONSISTENT SETS OF PROBABILITY MEASURES AND REPRESENTATION
THEOREMS

In Section 2.2 we examined the set of probability measures (scenarios) from
both mathematical and financial point of view. We showed that both SCRMs and
SCAIs can be represented in terms of sets of probability measures. In this chapter

we will discuss sets of probability measures in a dynamic setup.

Theorem 2.2.1 indicates that every set of probability measures generates a
SCRM. However, due to dynamic consistency property for DCRM, the set of proba-
bility measures that can generate a DCRM has to possess some additional features.
A set of probability measures having such additional features is referred to as a dy-
namic consistent set of probability measures. For a thorough discussion of various
definitions of dynamic consistent sets of probability measures and their relationship
with dynamic consistency property for dynamic risk measures we refer the reader to

[1, 12, 37] and references therein.
4.1 Dynamically Consistent Sequence of Sets of Probability Measures

In this section we shall discuss the concept of dynamically consistent sequence
of sets of probability measures, or, for short, consistent sets of probability measures.
Note that in dynamic setup, traditional researchers usually consider a fixed individual
set of probability measures over time, whereas our research will focus on a sequence

of sets of probability measures.

4.1.1 Definitions. Suppose we have the same mathematical setup and notations
as in Section 3.1. In what follows we denote by P the set of all absolutely continuous
probability measures with respect to the underlying probability P, and P¢ the set

of all equivalent probability measures with respect to P. Recall that our standing
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assumption is that P has full support. Note that in this case, due to the finiteness of
), the set P consists of all probability measures on €2, and also P¢ coincides with the

set of all probability measures on € of full support.

Definition 4.1.1. For any set of probability measures Q C P, its effective subset

eft""(Q) with respect to P! € Yt is defined as follows:

off"'(Q) :=={Qe€ Q : Q(F)>0}.
Definition 4.1.2. An individual set of probability measures Q C P is called full-
support with respect to filtration F if eff""(Q) # 0 for allt € T andi € {1,2,--- ,n;}.

Definition 4.1.3. A sequence of sets of probability measures {Q;}1_, is called full-

support with respect to filtration F if eff""(Q,) # 0 for allt € T andi € {1,2,--- ,n;}.

Note that if an individual set of probability measures Q C P is full-support,
then a sequence of sets of probability measures {Q;}Z, defined as Q; := Q for all

t € T is full-support as well.

Definition 4.1.4. For any P! € Yt, let Q be a subset of P with eff""(Q) # 0. The

infimum conditional expectation énfg Eg[X|Pf] is defined as follows:
S

inf Eg| X P! .= inf [EgX Pl = inf ( ( ) X(w >
QeQ XIF] Qeeffti(Q) X127] Qeeff(Q) \ 2 _tQ(Pf) )
forall X € G.

Definition 4.1.5. For any P! € Y!, let Q be a subset of P with eff*'(Q) # 0. The

supremum conditional expectation sup Eq[X|Ff] is defined as follows:
QeQ

Qw
pBolXIP] = s EoXIP] = sw (3 SEx)
QeQ Qecefft4(Q) Qeceffti(Q) we Pt Q( Z)

forall X € G.
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We denote by énfg Eg[X|F:] a random variable such that for all Pf € T* and
(S
w € P, énfg Eg[X|F](w) := énfg Eg[X|P}]. In addition, we denote by sup Eg[X|F]
S S

QeQ

a random variable such that for all P! € YT' and w € P!, supEg[X|F](w) =
QeQ

77

sup Eq[X|F/].
QeQ

Note that both inf Eg[X|F;] and sup Eg[X|F;] are Fi-measurable.
QeQ QeQ

Definition 4.1.6. Let Q be a subset of P. Q is called strongly consistent with respect

to filtration I, if it is full-support and the following equality holds true

2L B[ 1] = ot B[ Bul | 7i0] 7]

for everyt € {0,..., T — 1}, and X € G.

Definition 4.1.7. Let Q be a subset of P. Q 1is called weakly consistent with respect

to filtration T, if it is full-support and the following inequality holds true

1A max { éﬂf EQ [X’.,Fprl} (W)} > 1A éIEIfQEQ [X’Ft} y

w€eA €Q

for everyt €{0,...., T —1}, A€ F;, and X € G.

The following proposition shows that a strongly consistent set of probability

measures is also weakly consistent.

Proposition 4.1.1. If a set of probability measures Q@ C P is strongly consistent,

then Q is also weakly consistent.

Proof. Q is strongly consistent indicates that Q is full-support with respect to F. By

Definition 4.1.7, it is enough to show that for each P! € Y,

e { 1 Bo [X17s) ()} > iut Eo[XIP].
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Since Q is strongly consistent, Definitions 4.1.6 and 4.1.4 implies

inf E XP.t:'fIE['fIE X|F P.t}
LBl XIF] = fof Bo| juf Eu[X | e ] 17

— inf E [1tianE X|F P.t]
Qeetttio) L T MeQ ul X1 Fea] 11

< inf E { inf Eq[X| }’Pt]. 41
< e o @ng%g dnf Bo[X|Frn] @)y | P (4.1)

Since max { éan Eq [ X |Fps1] (w)} is a constant, for each Q € eff"'(Q),
S

weP}!

Eq [max { inf Eg [X|Fei] <w>} ) P} = max { dnf Bo[X| ] <w>} :

wep! L QeQ weP}

Therefore, (4.1) gives

int B [X17!] < max { inf Bo[X|us] ()}

t
weP;

Hence, Q is weakly consistent, and the proof is complete. O

Next, we define the consistency on a sequence of sets of probability measures.

Definition 4.1.8. A sequence of sets of probability measures {Q;}1_,, with Q; C P,
is called dynamically consistent with respect to the filtration F, if the sequence is

full-support and the following inequality holds true

laminq inf Eg[X|F < 14 inf Eo[X|F
Aggg{Qelrle ol X]| t+1](w)}_ a dnf EolX|F]

< tamae{ inf BolXFl) |,

for everyt €{0,.... T —1}, A€ F;, and X € G.

We will discuss how to construct dynamically consistent sequences of sets of

probability measures from dynamic consistent individual sets of probability measures.
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Proposition 4.1.2. For any full-support set of probability measures Q C P, the

following inequalities hold true

N o |
L i { it E@[Xmﬂ](w)} < 1 jof Eo[X|7]. (12)
érelfQEQ[mf Epm[X|Feaa]|F] < 1nf ]EQ[X|.7-"t] (4.3)

for everyt €{0,..., T —1}, Ae F, and X € G.

Proof. Fix t € {0,...,T — 1} and P! € T' by Proposition 3.1.1, we can write

P! = Ufi:l]%fjl. Since Q is full-support, eff*(Q) # . For any Q € eff"'(Q),

7

Eq[X|P]
“E g X %@
Pt+1
(P;;é QP ZP;+1Q Ptﬂ) . (44)

¥

First, by (4.4) and Definition 4.1.4, for any Q € eff""(Q), we can derive that

Pt+1)

Eo[X[P]> 3 mln{ inf Eys [X|Fo] (w )}
7 Q weP}
Q(P; t+ )70
—ggg{ it Bl X1 ](0) .
Hence,
t : t
BEEXIP = inf  BolXIP] > miy { uf BolXIFuil(w) ).

Then, (4.2) holds true for each P} € T* and therefore for all A € F;.
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Second, by (4.4) and Definition 4.1.4, for any Q € eff"'(Q), we can derive that

t+1)
Eo[X|P/]> ) @ A nf, Eu[X| P/
@(Pt“)
t+1>

= > Q Mnf En[X|PT ]+ ) 0 inf By (X [P
@(P:jl);é Q(PTH=0

—Eqljnf BuulX|F]| 7).

Consequently, after taking infimum of the right hand side in previous inequality, we

deduct that

Eo[X|F] > inf Eglinf Ey[X|Fn]|lF], Qe @,
Qeeffti(Q) ~ MeQ

By Lemma B.0.1 and Definition 4.1.4, (4.3) follows. O

The following useful corollary is a direct consequence of Proposition 4.1.2.

Corollary 4.1.1. If a set of probability measures Q C P 1is weakly consistent, then
{OE,, with Q; = Q, t € T, is a dynamically consistent sequence of sets of proba-

bility measures.

Using Proposition 4.1.1 and Corollary 4.1.1, we also conclude the following

result.

Corollary 4.1.2. If a set of probability measures Q C P is strongly consistent,
then {Qi}L,, with Q; = Q, t € T, is a dynamically consistent sequence of sets of

probability measures.

4.1.2 Examples. The rest of the section is dedicated to examples of dynamically

consistent sequences of sets of probability measures.

Example 4.1.1. Singleton set Q = {Q}, with Q € P¢, is full-support and clearly
strongly consistent. By Corollary 4.1.2 the constant sequence {Q, Q,..., Q} is dy-

namically consistent. For simplicity of writing, we will denote this sequence by Q°.
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Lemma 4.1.1. For anyt € T, we have

Z Lpe mf E@ [D|F] = Z 1p min D(w

' wePf
Proof. Tt is enough to show that for each P! € T,
inf Eg[D|P!] = min D(w).
Qeeffti(P) weP

Note that for all Q € eff"(P),

Eo[DIF] = ; D(w) 8(%3)
Z P 2, gl = D)
Hence,
gt ) EelDIP] = min D(w). (45)

If we take @ such that D(®) = min D(w), and Q™ such that Q"(®) = (1—1/n)Q"(F})

weP?
and uniformly distributed in other states, we can prove that

lim Eg[D|P}] = min D(w).

n—oo weP!

Note that Q" € eff"*(P), then

inf Eg[D|P!] < hmE D|P!] = min D
LB EQ[DIP!] < lim Eo[DIP] = min D(w).

The above inequality together with (4.5) implies

inf Eg[D|P!] = min D(w).
Qeeffti(P) we P!

]

Example 4.1.2. Lemma 4.1.1 implies that the set P of all absolutely continuous
probability measures with respect to P, is strongly consistent. Hence, the constant

sequence {P,P,..., P} is dynamically consistent.
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Example 4.1.3. By similar argument with Lemma 4.1.1, we can prove that for any
P! e T, meg Eq[D|P/] = min D(w). It implies that the set P° of all equivalent
epe weP;

probability measures with respect to P, is strongly consistent. Hence, the constant

sequence {P°, P, ..., P} is dynamically consistent.

Example 4.1.4. Leta > 1 be a real number. The following set of probability measures
Q4" :={Q € P° | Ep[dQ/dP|F;| < aEp[dQ/dP|F;_1] for allt € {1,...,T}}

15 strongly consistent.

Proof. Indeed, by (4.3) we have

ool EglX| 7] 2 inf Eol inf EulX|Fin]lFil,

for every t € {0,...,7 — 1} and X € G.

Next we will show that the converse inequality also holds true and hence, by
definition, Q%" is strongly consistent. Towards this end, assume that t € 7, X € G,
and a > 1; all arbitrary but fixed in what follows. For convenience, we denote by
P!t the set of partition (P{*',..., Pit1) such that P! = USL, PITY i =1, n,.

Note that k; + ko + - - - + k,,, = ngt1. Note that since Q*" C P, Q¥ = efft’i(Qa’“)

for every Pf € T

Pick up arbitrarily n; +n;.1 probability measures from Q**, and denote them
by (le @27 s 7@71,57 M1,17 M1,27 s 7M17k17 M2,1a M?,Qa s 7M2,k27 """ 7Mnt,17 Mnt,Qa
..M, ). Some of them are allowed to be the same. We will construct a new
? t,Rny
probability measure based on the above set of probabilities. For any i € {1,2,... n;},
: t4+1
JE€{L2,... ki}, and w € PJ" we put

M (w) QP
M ; (P Qi(PY)

H(w) := P(P!).

(2
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Note that Pfjl, ie{1,2,...,n}, 7 €{1,2,...,k;}, is a partition of €, and hence H
is well-defined, and since all probability measures in Q are of full support, H(w) is
finite for all w € Q. It is also easy to show that H(Q2) = 1, and thus H is a probability

measure.

Next we will prove that H € Q@**. On any set P/ € T,

dH .~ Hw) Pw) H(w) P(w)
Bl 1= 2 B B~ 2 EP;HWP(P;)

3 Hw) < Miy(w) Q(PLYB(P)

N 7=1 wezp_;l ]P)(Plt) B j=1 wezp;rl Ml](Pzt,;rl) @1(Pzt) ]P)(]th)

_ H _ (B _
2 M (P QP BE) 2 QY
Thus,
dH = dH, . &
Ep 51 7] ; Lo Bp| | 5] = ; lp =1
Hence, by tower property, for all s < ¢,
dH
Ep|— =1.
P[5I
Consequently, we get
dH dH
— < — <t. .
]E]p[dP | Fs] < aEp[dP |Fs_q], forall s<t (4.6)

On the other hand, for any Pf;“l e Yt

]Ep[dH i) = Z Hw) Pw) Z H(w)

) S -
dP ! Pitj_»l P(w) ]P)(]thjl) wEPﬁl P(Rt,jl)

Mi,j(w) @z(Pztjl) ]P)(Pz't)
M, (P Qi(P) PP

wePf,']'.'l
M (P QP PP Qu(PY) P(PY)
M, ; (P Qi(P)) PP QuP) PP
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Since Q; € Q**, then

dQ; dQ;
B[ | Fon] < aB2[ 2|71,
and thus,
dQ; dQ; dQ;
Ep[— |P)"] < aBpl—5|P]"] = aBe[—| P].
This implies that,
Q) _ Q(B)
- < .
P(P{}") P(F)
Hence,
QP PP
i > a,
PP Qi(PY)
and therefore,
dH t+1 dH i
< — | P
Er[ S|P < o = aBs[ | P

Since the above holds true for any P/ € T we have that
B[ Funr] < aBs[ |7
dP dP
By similar arguments as above, inductively, one can show that
B[ T 17 < ol 7],
for any s > t. Combining this with (4.6), we conclude that H € Q*".

Next let us evaluate Ex[D|F;]. Consider a new random variable Y, defined as

follows:
nt kl
V=) ) Lpt1Bag, ,[D| Fraa]
i=1 j=1
Then, for any m € {1,2,...,n;}, we deduce

ne ki
Eq,.[Y|Ph] =Eq, > Lpte1 B, ;[ DI Fipa] | Py

i=1 j=1

ne ki
=D Eq,[lpEu,, [DIFe] Py

i=1 j=1

=3 Eou[Lpt1Eus,, [DIF]| ). (47)
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For convenience, we put ¢t} .= By, [DIPH] = 3 i) D(w). Then

wepitl Mm](PH_l)
Eq,.[Y|P,] ZE@ Lpee1Bag,, , [DIFei]| Py

= ZE@MHPMCHW ]

_ @m PHI) R

o Qm Pt+1> Mm’j(w)
]Zl 6;—&-1 Qm Pt) Mm,j(Psm—t—jl)D(w).

From here, using the fact that H(P}) = P(P!), we conclude that
Eqo, [Y|P,] = Eu[D|P,].

Since H € Q**, we have that Ex[D|F;] > inf Eg[D|F]. Consequently, the follow-
QeQa

ing inequality holds true

Eq,[V|P,] > inf EgD|PL],
Qegau

By (4.7), it follows that

ZE@ ot Bae, [DIFsi]|PL) = inf BglDIPL].

QEQa u

Since the above equality holds true for all M, ; € Q**, by Lemma B.0.1, we have

Z]E@m[ ity 0 EMM[DmHHP;] > 1p, _inf Ey[DIP.],
— m,j > Q Qau

and since, this is true for all Q,, € 9%, by Lemma B.0.1, we can conclude that

inf EQm[lem inf EMW[D\EHHPH > inf Eg[D|P].

QmeQeu mad My, j € Q0 QeQen

or equivalently,
fE[f]ED]—" P] f E-[D|P!
o Eq|, nf  En|D|Fi]] —Q;gw alDIP]-

This concludes the proof that Q** is dynamically consistent. m
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The following shows some property for Q*".

Proposition 4.1.3. For any Q € O™, we have,

d
Ep[d%‘ft} S at, teT.

Proof. From the definition of Q**, take j = 1, we have

d d
Bl 1] < sl 31

d
= aEx[ ]

=a.

Assume Ep[22|F;] < a' holds, then

dQ dQ
e[ g 1Pl < aBr 1)
S aal = a/t+1
By induction, we have
dQ
Fol— t
P SIF] <o
forallt € 7. O

Corollary 4.1.3. Using Proposition 4.1.3, we conclude that for any Q € Q%"
Q(A) < a'P(A) for allt € T and A € F.

Different probabilities in Q%" can be regarded as different opinions about the
distribution of cash-flows; the above inequality provides an upper bound of these

probabilities in terms of the underlying probability P.

Example 4.1.5. By similar arguments as in previous examples, one can show that

the set of probability measures Q%' defined as follows
Q"= {Q € P | Eg[dP/dQ| F;] < aBoldP/dQ|F;_1] for allj =1,...,T,}

15 a strongly consistent set of probability measures.
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Analogous to Proposition 4.1.3, we can derive the following result.

Proposition 4.1.4. For any Q € O™, we have,
dP
EQ[@|Z/‘E¥] Sat, tGT

Corollary 4.1.4. Using Proposition 4.1.4, we conclude that for any Q € O™,
Q(A) > a™'P(A) for allt € T and A € F;.

The above inequality provides a lower bound of these probabilities in terms of

the underlying probability P.
4.2 Representation Theorems for DCRMs and DCAIs

In this section we will present a representation theorem for dynamic coherent
risk measures in terms of dynamically consistent set of probabilities. This result
combined with the results from Section 3.4 about duality between DCAIs and DCRMs

will lead to a representation theorem for dynamic coherent acceptability indices.

Theorem 4.2.1 (Representation Theorem for DCRM). A function p: T xDxQ — R
1s a dynamic coherent risk measure if and only if there exists a dynamically consistent

sequence of sets of probabilities U := {Qs}1_, such that,

T
p(D) = — inf EQ[;DSW , forallteT, DeD. (4.8)

Proof. Sufficiency. Since U is dynamically consistent, it is full-support with respect
to filtration F. Definitions 4.1.3 and 4.1.4 indicate that p in (4.8) is well-defined for
allt € 7, D € D and w € Q. We will show that p satisfies (A1)-(A7) in Definition
3.3.1.

(A1) and (A2) directly come from (4.8) and Definition 4.1.4.
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If Dy(w) > D.(w) for some t € T and D, D" € D, and for all s >t and w € Q,

then fix P! € T, we have

. T
) t | Q(w) )
W(D,@) = — inf Bg[Y D,|P]=— inf b
p ( W) 6£Q Q g ’ Z] Qee;frtl,i(gt) (u;P; Q(Pzt) ; (W)
Q(w)
< — QEefft 5 ( ;t Q Pzt Z (W))
= — inf Eg ZD/]Pt = p(D', @)

Qe

for all @ € P!. In general, we have p;(D,w) < ps(D’,w). (A3) holds true.

Now we show that p satisfies (A4). For all A > 0,D € D,t € T, P! € T and

w € P,
3 Qw) |\
pAD,w) = = fuf Bo[ ) (AD)IF] == inf | (Z QP @Ds(w))
_ : QW) . — ) -
N AQEeg&lﬂf(Qt) ( Z Q(Pzt)/\z Ds(w) = )\pt(D,w) .

weEP!

We show that (A5) is satisfied. For allt € 7, D, D" € D, P} € T' and w € P!,

by Definition 4.1.4 and (4.8),

T
D +D'\w) = = inf Bq[} (D +D'),|F]
. QW) ¥ , )
= f D+ D),

Qeci(Qy) (wep_t Q(F) ;( D))
. Q) (v o )

Qe (@ (wep_t Q(F;) <2 S 2; 5(w)>

Then, by Lemma B.0.1,
p:(D + D' w)
- QW) > | ( QW) < )
= Qeeflfltl’i(gi) (wezpt @<Rt) ; (W) QEe;fItl’i(Qt) ;t Q(Rt) ; S(w>

=pi(D,w) + ps(D',w).
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We show that p satisfies (A6). For allt € 7, D € D, Pl € Y, & € P!,

Fi-measurable random variable m and s > ¢, by Definition 4.1.4

T T
pt(D + ml{s},@> = —6££t E@[Z(D + ml{s})l|Pﬂ — _Q%lgt EQ[Z;DI + mlpﬂ

=t

- it (X g imwwmw)))-

Qcefft*(Qy) wept z

Note that m is constant on P!, then

pr(D +mlyy,0) = —  inf ( ) + Z 8((;3 iDz(w))
@) =

Qcefft(Qy)

.

We will show that (A7) — dynamic consistency, is satisfied. Since U = {Q;}]_,

is dynamically consistent, we have,

T
Lap(D) = =14 Jnf Eq ZD 7] > 14 gleig{ - Qenglfﬂ Egl Y | Dyl Frni](w) — Dt}
s=t s=t+1

=14 glelgl {thrl(Daw) - Dt} )
foreveryt €7, D €D and O, € U.

Similarly, one can show that 14p,(D) < 1amaxg,ea {pii1(D,w)— D}, for
everyt € T, D € D, Q; € U. Thus (A7) is satisfied.

Necessity. The set U will be constructed explicitly. Fix a time ¢ € 7. Recall that
{P},..., P! } denotes the partition of 2 that corresponds to F;. Also, we will denote
by {P/%,..., Py} the partition of P} generated by F,, for some future time s > t.
Thus P} = Uj, Pt 7. Assume that P! is fixed for some i € {1,...,n,}, and define the

following probability space (0, 2Qi,]IDum) with,

Q= {(S,Pi’;):sE{t,t—I—l,...,T} andjE{l,Q,...,mS}},
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and P (w) = 1/card(Qf) for each w € Q.

Let us denote by X(€}) the set of all random variables on Q. There exists

77777

for all D € D}. The map can be defined as follows: for any X € X(Q2f), put

N X((s,P)), ifs>tandwe P77
D (w) == (4.9)

0, otherwise ,

and vice versa, for any D € D!, define
XP((s, Pf]s)) = Dg(w), (4.10)
for s >t,je{l1,2,...,my}, and w € Pfjs

Consider the following function ¢ : X(£2}) — R with,

1

We claim that ¢ is a static coherent risk measure, i.e. satisfies the properties (R1)-
(R4) of Definition 2.1.2. Indeed, for any X,Y € X(Q}), such that X <Y, we have,
DX (w) < DY (w), for all s > t and w € Q. Then, by (A3), the monotonicity of p,
we get pi (DX w) > p(DY,w), for w € Q. Therefore, by (4.11), ¢(X) > ¢(Y), i.e. ¢
satisfies (R1).

Note that for all X € X (Q) and A > 0, by (4.9), we have,
D3*(w) = AX((s, P)) = ADJf (w),

for all s > t and w € Pfj From here, by (4.11) and using homogeneity of p, the

homogeneity (R2) of ¢ follows.

Next we will show that ¢ satisfies (R3). For all X € X(Q) and k € R, by

(4.9), we have,

DI (w) = X((s,P))) + k= D (w) + k,
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forall s >t and w € P,f; Therefore, by (4.11) and (A6), translation invariance of p,

we deduce
1
X =~ 5 (DXtF = D 1
(X + k) T—t+1pt( ;W) T_¢ 1pt( + Kkl my,w)
1 1

- ¢<XD) - k?
for all X € X().
To show that ¢ satisfies (R4), consider an X € X (). By (4.9)
DI (w) = X((s, P))) + Y (s, P,})) = DY (w) + D (w),

for all s >t and w € Pfjs,

and therefore, by (4.11) and (A5), subadditivity of p, we

obtain
- X Y
¢(X+Y)—T_t+1pt(D + DY, w)
1 1
<—— (DX — (DY
S o)t D)
= (X)) + (V).

From all the above, we conclude that ¢ is a static coherent risk measure. By
Theorem 2.2.1, representation of static coherent risk measures, there exists M!, a set

of absolutely continuous probability measures with respect to P™ on Q!, such that

¢(X):— inf EM[X].
MeM!
By (4.11), we have,
1
— p(D¥,w) = — inf EylX P 4.12
T—t+1’0t( ’w) Mlen./\/lﬁ M[ ]7 w € 3 ( )

Since there is one-to-one map between X (Q!) and D}, for any D € D!, we also can

write

1
—— p(D.w)=— inf EylXP"]. 4.1
T Pw) ==t Bul X7 (4.13)
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Fix a time t° € {t,t + 1,...,T}, and denote by D the process lypoy. By

(A6)-translation invariance and (A2)-independence of the past of p, it follows that

p(D,w) = —1, w € P!. Hence, by (4.13),

5 1
inf Ey[XP]= —v-—.
MlélMg e[ X T'—t+1

Note that Ey[XP] = M({t°} x P!). Thus, (4.14) implies

1
inf M({t° Py= —0—.
Mlen/\/l§ ({7} > F) T—-t+1

(4.14)

Similarly, one can show that Ey[X - ] = —M({t°} x P!). Thus we derive that

inf Ep[X 0] = inf (=M({t°} x P!)) = — M({t°} x P!),
ot m[X ] Mglw( ({t°} x P})) S ({t"} x F))

and consequently

1
M({t°} x P}) = ——.
Mil& A} = P =
This yields that
1
M{tY x P)= ———, e {t,t+1,...,T}). 4.15
(P} x P = g € {4 1T (4.15)

For any s € {t,t +1,...,T}, define M* : Q! — R as follows

. (T—t+1)M((T,Pz’J)), when r = s and j € {1,2,...,m,}
M (r, PED)) =
0, otherwise.

It is straightforward to show that M is a probability measure on Q! for every s €
g P y i

{t,t+1,...,T}.

For all D € D, we can derive,

T T T my
ZEM [XDele] = Z (Z ZMS(( 7PZt]r))(Dsls)r(w)), for some w € Pfj’”
s=t s=t r=t j=1

T mp
- Z (ZMS((& P?))Dy(w)), for some w € P¥
s=t j=1
T mr
- Z (Z(T —t+ 1)M((s, B;"))Ds(w)), for some w € P/
s=t j=1

(T —t + 1)Ep[XP].
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Hence, by (4.13), we have

D,w)=—(T —t+1) inf Ey[X"]=— inf Epgs [X P51, c Pl (4.16
pt(D, w) ( )Mlenw m| MlethZ M w € P;. (4.16)

Since p satisfies (A6) and (A7), we deduce that
ps(Dsl{s} — Dsl{T},w) =0, s>t D e D, w e Pit.
Thus, (4.13) and (4.16) imply,

— inf (B [XPH9] — Bygr [XP17)])) = — inf ZEMT (Ds1(sp=Dalyry)rls]
MeM! MeM!

:pt(Dsl{s} - Dsl{T},w) =0.

Since the above equality holds true for all D € D, it also holds true for —D. Hence,

we have

inf (Epgs[X P — Eyr [X ~Pe113]) = 0. (4.17)
MeM!

On the other hand, by (4.10), one gets

inf (Epgs [X P — Bpgr [X P21 ]) = — sup (Bpps [XPo1] — Bypr [XPe112])
MeM; MeM?
Thus,
sup (Epps [X P 1] — By [XP2113]) = 0 (4.18)
MeM!?

By (4.17) and (4.18) we conclude that

sup (Bps [XPo1] — Bygr [X2 1)) = 0 = inf (Epgs [XPo19)] — Epgr [X Po1111))
MeM? MeM;

and hence
Epgs [X P10} ] = Bpgr [X Pe1imy] (4.19)

for all s > ¢, and M € M!. Therefore, we can rewrite (4.16) as follows,

D,w) = — f[ E XDsl{}]
pt( Mleth Z M=

— — inf [EMT[ZXDSHT}]]

Me M —

= - ot By Xt | (4.20)
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for all D € D, and w € P}.

To summarize, for every P}, i = 1,...,n;, we constructed a set of probability

measures M? on Qf. Having these sets, we define Q; as follows:

= {@ € P : there exists {M;}}, such that,V i€ {1,...,n:},7 € {1,...,m%},

1 1

. ¢ s
M; € M; and Q(w) o N(PZt]T)

T 6T +T
M (T, Py )) for all w € Py, } 7
where N (P) stands for cardinality of the set P C €.

By direct evaluations, one can show that Q;, ¢t € 7, is a set of probability
measure on (). In addition, one can show that for all t € 7, Pl € T" and Q € Q,,
QP = n% Hence, by Definition 4.1.3, the sequence of sets of probability measures

{O}], is full-support with respect to filtration F.

Next we will show that (4.8) is fulfilled. Note that,

T

HINIEDS [ZDSM%]

EP? s=t

1 T t,T
3y [Z ) Ry (T P)

J=1 wEPt = 5=t

= Z ZD M (T, P51Y)]
— EMT [Xzs:t Dsl{T}] .

If infgeg, Eg| P D,|P!] > infyg, e per Epgr [XZL Dslry]then there exists M; € Mt
such that

EMT[XZS ¢ Dolgry] < ngé Eg ZD 1] (w (4.21)

However, for @ constructed by I\AAI/Z-, as previously proved,

By [X 2o PeLen] ZD [P] > inf Eq ZD 1P,
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that contradicts (4.21). On the other hand, if

T
inf E D,|P!] < inf Eyr[XXe=tDPoliny]
Qe Q ; | Z] M; EME M?[

i

then there exists @ € 9, such that

f Eyr[X o= ¢ Dalimy] > Eg Dy|P}]. 4.22
Mlth | Z | (4.22)

As previously proved, there exists M € ML such that

T
r T
E?@[ZDs’Pf] _ EM?[XZS:t Diliry] > Mlg/f\/(t]E : [T Dsleny)

which contradicts (4.22). Thus, we conclude that

T
fE Ds Pt = f E XZS zDsl{T}
g2 Bal 2 DI = inf, Bl
and by (4.20),

T
p(D) = —Qlélft Eg ZtDsU:t} :

To complete the proof we need to show that {Q,}7_, is a dynamically consis-
tent sequence of sets of probability measures. Recall that by (A7), dynamic consis-

tency of p,
La(min pi1(D,w) = D) < Lape(D) < La(max p (D, w) — D), (4.23)
for all D € D and A € F;. Using this, we get

T
_ < _
Loy (= g Bl 32 Pal0) = D0 < (- o Bl S0

for any D € D and A € F,. Consequently, we obtain

T T
1AmaX{Q€1rglf 1EQ ;Ds|ﬂ+1}(w)} > 1A(§£C£tEQ[ZDS‘ﬂ]’ DeD, Aec F,.

(4.24)
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Similarly, by (4.23)

T T
1A(I£lgj‘:{ - Qeifglfﬂ Eq [S;I Dy|Fin](w)} = Di) > 1a(— Jnf E@[; D,|F))
and hence

T T
1Ag1€ig{QeirglfﬂE@[;DsmH](w)} < 1AQ;g£f)tE@[;Ds|ﬂ}, DeD, A€ F.

(4.25)
Combining (4.24) and (4.25) dynamic consistency of {Q;}L, follows. O

Recall that in Chapter 2 we discussed that any set of probability measures and
its closed convex hull generate the same risk measure. We will extend it to dynamic

framework.

Proposition 4.2.1. Let Q be a subset of P with eff"'(Q) # 0 for some P! € Y.
Denote the closed convex hull of Q by Q°. We have

inf Eg[X|P!] = inf Eg[X|P!
dnf BolX|F] = inf Eo[X|F],

forall X € G.

Proof. By Definition 4.1.4, it is enough to show that for all X € G,

inf Eo[X[P]= inf Eo[X|P].
Qeefi"(Q) Qeef(Q%)

First, note that eff®’(Q) C eff®"(Q%), thus

inf Eg[X|P]>  inf  EqlX|Pl]. (4.26)
Qeeft™(Q) Qeeft(Q°)
We will verify the other way in two steps. Denote by Q¢ as the convex hull

of Q. For any Qy € eff*"(Q®), by the Definition 2.2.2 of convex hull, there exists
{Q1,Qy,-- ,Qi} € Q such that @y = S°F , AQ with A, > 0 and S3F A = 1.
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Since Qo(Pf) > 0, then there exists at least one Q; where j = 1,--- ,k such that
Q;(F) > 0.
Qo(w) X (w)
BoX|P] = 3 252
weP}! Z
_ Z Zz 1/\l@l w)X (w)
S T n(F)

. (;) ) NQ(w) X (w)
=2 T s e

wePl  q,(PH>0
Z) Al ( Zweng QZ<W)X(W>)
QJ(Pzt >0
= 4.27
Z) NQu(PY) 427)
Q]'(Pit >0
Define a constant a :=  inf Eg[X|P!]. By Definition 4.1.4, for all Q; with
Qeefiti(Q)
Q;(P) > 0, we have
2wept QW)X (w)
Eg. [X|P!] = - >a.
Q] [ | 7 ] Q] (Pf) — a
Thus, > pr Qj(w) X (w) > aQ;(P}). By (4.27), we can derive
(Z) M(Xep Qw)X ()
Q;(PH>0
Eq, [X|P!] = 2
QO[ | 7 ] (Z) )\IQZ(Pzt)
Qj Pit >0
> Ai(aQu(P))
> Qj(Pit)>0
T2 AR
Qj(Pit)>0
> AQI(F)
Q;(P})>0
= Q =a.
> NQu(F)
Q;(P})>0
We verified that for all Q, € eff""(Q°),
BoXIP 2 _inf EolX|PI.
Then, by Lemma B.0.1, we can conclude
inf  Eq,[X|P]> inf Eo[X|F]. (4.28)

Qeefft¥(QC) Qeeffti(Q)
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Next step, note that QC is the closure of Q°, then for any Qy € eff®’(Q°), since

Qo(P!) > 0, there exists a sequence (Qy, Qy, - - -) with each Q, € eff*(Q°) such that
lliglo Q=Qo.

Since we are in finite probability space, the above limit is state-wise. Hence, by the

linearity of expectation and finiteness of space,

Qo
Eq[X|P|(@) = Y =~ Pt
weP}
e Q(w)X (w)
= Jlim > (P
weP!
= lim Eq [X|P/]
Thus, it implies
Eg, [X|P] > inf X|P1.
WXIP)Z _inf  EolX|P

We verified that for all Q, € eff""(Q°),
Eo.[X|P! > inf Eg|[X|P!].
@lXIP] > inf Eq[X|P
Then, by Lemma B.0.1, we can conclude
inf _ Eq,[X|P]>  inf  EglX|P].
Qeeff**(Q) Qeeft(Q9)
Together with (4.28), we get
inf  Eq[X|@)> inf Eg[X|(@).
Qeefft*(Q°) Qeeffti(Q)
Together with (4.26), we conclude that, for any X € G,
inf EQ[X] (Cu) = inf EQ[X] ((D) .

Qeeff:#(Q°) Qeeff"*(Q)

Corollary 4.2.1. Using Proposition 4.2.1, we can conclude that
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(1) If an individual set of probability measures is strongly consistent, its closed con-

vex hull is also strongly consistent.

(2) If an individual set of probability measures is weakly consistent, its closed convex

hull is also weakly consistent.

(3) If a sequence of sets of probability measures is dynamically consistent, after
taking closed convex hull for each individual set, the new sequence is also dy-

namically consistent.

Together with the Representation Theorem 4.2.1 for DCRMs, we can conclude

the following corollary.

Corollary 4.2.2. A dynamically consistent sequence of sets of probability measures

and its closed convexr hull sequence generate the same dynamic coherent risk measure.

Having derived a representation theorem for dynamic coherent risk measures in
terms of dynamically consistent sequence of sets of probability measures, and having
derived the duality between DCRMs and DCAIs, we can present another important
result: representation theorem for DCAIs in terms of dynamically consistent sequence

of sets of probability measures.

We shall mention that Proposition 4.2.1 and Hyperplane Separation Theo-
rem B.0.2 are indispensable technical results to prove the representation theorem for

DCAIs.

Definition 4.2.1. Let Q be an absolutely continuous probability measure with respect
to reference P with Q(P!) > 0 for some P! € Y. The conditional probability measure

cond"(Q) is defined as follows:

cond" (Q)(w) :=

for allw € P}
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It is not hard to observe that cond"*(Q) indeed is a probability on P.
Definition 4.2.2. Let Q be a subset of P. The set of conditional probabilities
cond"(Q) is defined as follows:

cond”(Q) := {cond"(Q), V Q € Q with Q(P!) > 0},

for allt € T and P! € Y.

Lemma 4.2.1. If Q C P is full-support, closed and conver, then cond"'(Q) is closed

and convez for allt € T and P! € Y.

Proof. Since Q is full-support, then every cond"*(Q) is nonempty set. For any
cond”'(Q) € cond"*(Q), by Definition 4.2.2, we have Q(P!) > 0. Since Q is closed,

there is a sequence (Qq, Qs, -+ ) with each Q,, € Q such that
llifilo Q= Qo.

Since we are in finite probability space, the above limit is state-wise. There exists

a subsequence of (Qq,Qy,---) which can be assumed to be the sequence itself, such

that Q;(Pf) > 0 for all j =1,2,---. Then,
llim cond”*(Q;) = cond""(Qy) .
So, cond"*(Q) is closed.

Since Q is convex, there exists Q1, Qq, - -+ , Qg such that Qg = Zle AN Q; with
A > 0and S5, A = 1. Since Qy(P}) > 0, then there exists at least one Q; where

j=1,--- k such that Q;(P}) > 0. We pick up all Q;,,Qj,,---,Q;, such that all of
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them are not zero when measuring P!. Then, for all w € P!, we have

cond"(Q)(w) = 8 0((]3’5))
Y QW)
Qo(P})
Y QW)
Qo(P)
)\Jz@ﬂ Pt Qﬂ( )
Z QO Pt @jz( Z)
Z )\J(l@@jlpt cond""(Q;,)(w)

Note that ”Qzlp(t};) >0 and Y ., J@%#s) = Zg;t@’?f(l}%’)l(})?) = gggg? 1. Hence,

cond"’(Q) is convex. O

Definition 4.2.3. A family of sequences of sets of probability measures (U* :=
(99 ) vc(0,100) is called increasing if cond™* (QF) 2 cond"(QY), for all x > y > 0,

t €T and P}.

Before we present the representation theorem for DCAIs, we shall discuss a
technical result as follows. It will be used for representation theorem of ADCAIs in
the following chapter as well. It is worth to mention that Hyperplane Separation

Theorem B.0.2 is used to verify the lemma.

Lemma 4.2.2. Given a finite probability space (2, P) with full support. Let N denotes
the number of states in §2, and P denotes the set of all probability measures absolutely
continuous with respect to P. For any two closed and convex subsets Uy C P and
Uy CP,if

max E[X] > max E¥[X],
Pel, PeUs

for all random variables X. Then, we have Uy C Uy.
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Proof. First, we can think of U; and U, are two closed and convex subsets of the

N-dimensional space RY.

Assume there exists a point (probability measure) Qq in RY such that Qg € Us
but Qo > U;. Singleton {Qp} is a closed and convex set. Since {Qy} and U, are
disjoint, by the Separating Hyperplane Theorem B.0.2, there exists a point p such

that

inf p-z> su . 4.29
,dnf P Sup p -y (4.29)

We can define a random variable Xy(w) := p(w) for all w € Q with w is the corre-

sponding dimension in RY. Then, we can rewrite (4.29) as follows:

inf EQ[X,] > sup EQ[X,].
Qe{Qo} [Xo] oet [Xo

Since U; is closed and {Qp} is singleton, we have

E®[X,] > max E%[X,] .

Note that Qp € U,. Hence,

max EF[Xo] > E2[X] > maxEF[X].

PEU, Pel;
which contradicts the assumption maxpey, EF[X] > maxpey, EF[X]. Finally, we have

U, C U [

Theorem 4.2.2. « is a normalized and right-continuous DCAI if and only if there
exists an increasing family of dynamically consistent sequences of sets of probability

measures (U* := (QF)ig)we(0,+00) Such that

T
ay(D) = sup{z € (0, +00) : inf, Eo[Y DJF] >0}, teT, DeD. (4.30)
¢ s=t

Proof. Sufficiency. Given an increasing family of dynamically consistent sequences

of sets of probability measures (U” := (QF){_y)ze(0,+00) such that, for all ¢ € 7 and
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DeD,
T
ay(D) = sup{z € (0,+00) : Qiengf EQ[ZDSU-}} > 0}.

s=t

Let us define p* such that

T
(D) :=— inf E IDAN
i ( ) Qlengf Q[sz:; | t}
By the Representation Theorem 4.2.1 of DCRMs, each p* is a DCRM. By Definition

4.1.4 and Definition 4.2.2, for w € P},

T
piD.w) = = duf Ba[ ) Dl ()

T
=— inf )E@[ZDS} .
s=t

Qecondt’i(Qf
Since U? is increasing, for y; > 3, > 0, we have cond”"(Q¥') D cond"*(Q¥?). Then,

for all w € P!,

T T
Yi(D - _ inf E D, >= — inf E D,| = p*”(D,
pi'(D,w) QEconl(?xi(Qfl) Q[; Iz @600111;%”'(@%’2) Q[; 1=70)

Note that the above inequality holds true for all P}. We know that p” is increasing

with respect x. Therefore, we can rewrite « as,
ay(D) = sup{z € (0,+00) : py(D) < 0}.
By the Theorem 3.4.2, we know that « is a right-continuous and normalized dynamic

coherent acceptability index.

Necessity. Since « is a normalized and right-continuous dynamic coherent
acceptability index, by the Theorem 3.4.3, we have, there exists an increasing and

left-continuous family of DCRM (p®),e(0,400) such that
(D) = supfz € (0,+0) : pE(D) < 0}

By the Representation Theorem 4.2.1, for each p®, there exists a dynamically consis-

tent sequence of sets of probability measures U® := {Q%}T_, such that

T
"(D) = — inf EofS D],
pi(D) = - inf, @[; Fa
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which implies,
T
a(D) = sup{w € (0, +00) : inf. E@[;Dsm] > 0}.

Denote U® := {O%}T_ as the closed convex hull of U* with QF is the closed convex
hull of QF for every s =0,1,---,7T. Proposition 4.2.1 shows that

P (D) =— inf Eg[) Ds|F]=-— fIE Dg|F
pi (D) QIEHQZQZ | 7] m @Z | 7] -

Note that the above equality holds true for all D € D and t € 7. By Definition 4.1.4

and Definition 4.2.2,
T

Y (D) =— inf E D,].
p; (D) Qccond®(39) Q[; ]
Since Q7 is full-support, closed and convex, Lemma 4.2.1 implies that Condt’i(Qf) is

also closed and convex. Then, Lemma 4.2.2 showes that cond”'(Q¥) D cond"(QY) if

x>yforallteT.

The above argument holds true for all P! € YT'. We know that (U* :=

(QF)[_0)ze(0,400) Is increasing with respect to . O

Theorem 4.2.2, besides being a fundamental theoretical result, can serve as
basis for construction of DCAIs by means of constructing increasing sequences of
dynamic sets of probability measures. Using this idea, we present here two abstract,

non-trivial, examples of DCAIs.

Example 4.2.1. Dynamic upper-limit ratio.

Assume that h : (0,400) — [0,400) is an increasing function. Define Q° as follows,

dQ

d
& = {Q e PR o

cﬂP’| 4] forallj=1,...,T,},

[ Fil < (14 h(z))Eg|

and let U* = {Qx}fzo. Note that OF = QUM u o > 0, where Q%% a > 1, is

defined in Example 4.1.4, and thus 0" is dynamically consistent for any x > 0. Also
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observe that monotonicity of h implies monotonicity of O" with respect to x. Hence,
by Theorem 4.2.2,

T
ay(D) = sup{z € (0,+00) : inf E@[ZDSU—}} > 0}.
QeQr s=t

1s a normalized and right-continuous dynamic coherent acceptability indexr. We call

it dynamaic upper-limit ratio.

Example 4.2.2. Dynamic lower-limit ratio.

Similarly, using Example 4.1.5, we consider o = QML for some increasing, non-
negative function h. Then, U* := {Q“”}tT:O 15 dynamically consistent, and by Theorem
4.2.2, the function o defined by (4.30) with QF = Q. x > 0, is a normalized and
right-continuous dynamic coherent acceptability index. We call it dynamic lower-limit

ratio.

Proposition 4.2.2. Static Al is a particular case of the DCAI and corresponds to
T = 1. Same is true for the representation theorem for static Al in terms of family

of sets of probability measures.

Proof. (i) Assume Fatou Property holds, we are going to prove that right-continuity
holds. In fact, if right-continuity doesn’t hold, by the monotonicity of CAI, there

exists « € [0, 4+00) such that

lim oy (D + cliplo,w) > > a(D,w) .

c—0F

However, by Fatou Property, since D 4 cliylqg — D, we should have ay(D,w) > z,

which contradicts the above inequality. Therefore, right-continuity holds.

(ii) Assume right-continuity holds, we are going to prove that Fatou Property

holds. We will define X/ (w) := |X,,(w) — X(w)| + X (w). Hence, we have X/ > X,,.
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By the monotonicity, we have
a(X)) > a(X,) > .

Denote ¢, = max,co{ X} (w) — X(w)}, we know ¢, > 0. Because of finite space, we

can prove that lim,,_.. ¢, = 0. By the monotonicity, we have
(X +¢) > a(X)) >
By the right-continuity, we have
a(X) = JL%Q(X+cn) > .

Therefore, Fatou Property holds. O
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CHAPTER 5
ALTERNATIVE DYNAMIC COHERENT ACCEPTABILITY INDICES

Many researchers have contributed to the theory of DCRMs. The major differ-
ence among them is the dynamic consistency. In this chapter, we use DCRMs defined
in Appendix A. It provides us an alternative platform to study DCAIs. In fact, this is
the first result we got by studying DCAIs. We differentiate it from DCAIs established
in previous chapters, by naming it alternative dynamic coherent acceptability indices

(ADCAISs).

We assume the same mathematical setup and notations in Section 3.1. In
particular, we stress that Y := {P}, P;,..., P! } denotes the unique partition of {2

at time t that generates F;.

Definition 5.0.4. A basic dynamic acceptability index is a function

a:7T xDxQ—[0,400] that satisfies the following set of properties:

(O1) Adaptiveness. For anyt € T and D € D, ay(D) is Fi-measurable;

(02) Independence of the past. For anyt € T and D,D' € D, if there exists
A € F, such that 14Dy = 14D’ for all s > t, then 1404(D) = 1acy(D');

(0O3) Strict monotonicity.
(03.1) For any t € T and D,D" € D, if Ds(w) > D.(w) for all s > t and
w € Q, then ay(D,w) > ay(D',w) for all w € §;
(03.2) If ay(D,w) € (0,400) for somet € T, D € D and w € €, then

(D + clyy, w) > (D, w) for every strictly positive constant ¢ € R;
(O4) Arbitrage consistency. o (1) = 400 for allt € T and s > t;

(05) Relevancy. Forallt € T, Pl € T, w,0 € P! and s > t, we have

7

(=l Ly, w) = 0;
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(06) Scale invariance. o (AD,w) = ay(D,w) for all A >0, D € D, t € T, and

w € Q;

anslation invariance. oy(D+mlpy,w) = ap(D+mlpgny, w) for everyt € 7T,
o7) Tr lation i i D Ly D Ly T

D eD,we, s>t and every Fi-measurable random variable m;

(O8) Right continuity. lim o (D + clyy,w) = ay(D,w) for allt € T, D € D, and

c—0+

w € Q.

(O1) and (O2) are the same as (D1) and (D2), which are the natural properties
in dynamic framework. (O3) is stronger than (D3) since it has a strict inequality
when positive cash is added into a portfolio, as in (03.2). Arbitrage consistency
(O4) indicates that ‘an arbitrage’ is +oo index level and hence the basic dynamic
acceptability index is unbounded above. Relevancy (O5) implies that a possible loss
portfolio has 0 index level. Combined with (O3), a negative portfolio has 0 index
level as well. (O6) and (O7) are the same as (D4) and (D6). For technical reasons,

we use (O8) to describe the right-continuity of ADCAISs.

Definition 5.0.5. For any basic dynamic acceptability index o, the x-level set of

positions with respect to Pl € Tt is defined by
DL .= {D € D|ay(D,w) > =, for allw € P}, (5.1)

where x € [0, 4+00].

We observe that all strictly positive positions are belonging to D% for any
z € [0,+0c]. By the Definition 5.0.4, D5’ = D, for all P! € T*. Note that (O1) -

adaptiveness indicates that o, (D) is a constant on each P;.

Definition 5.0.6. For any basic dynamic acceptability index o, D € D and x €

(0, 4+00], the x-level minimum cash payment with respect to P! € Y, is defined by

mcP®h = inf{ce R : D + clyy € DL} (5.2)
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For any D € D, since D is a bounded process, there exists a positive number

kP € R such that |D| < kP. Therefore,
{ceR:D+cly € DY} C (—(T+ DEP, (T +1)EP),

and then —(7 + 1)kP < mcP®% < (T 4 1)kP, which means mc”*" is finite and

well-defined.

Definition 5.0.7. For any basic dynamic acceptability index o, D € D and x €

(0, +00], the x-level minimum cash payment at time t, is defined as follows:
MCP#H(w) := meP®H | if we P, (5.3)

for all w € ).

We can observe that MCP?*" is constant on each P! and therefore is a Fi-

measurable random variable.

Lemma 5.0.3. Given a basic dynamic acceptability index o, D € D,z € (0,400)
and P! € Tt mcP @b s the x-level minimum cash payment with respect to P} € T*

if and only if for allw € P! and n > 0,

(2

(D +mc?"H 1, w) > x and (D + mcPmH 1, —nl,w) < .

Dzt

Proof. Necessity. If mc is the z-level minimum cash payment with respect to

P! e Y by (5.1) and (5.2), for all w € P} and 7 > 0,
(D + mc?®H 1, — nly,w) < x.

If there exists a @ € P!

17

such that ay(D + mcP®41, o) < . Then, there exists a
positive € > 0 such that a;(D + mc? 41, @) = x — €. By (O8) — right continuity of

«, there exists ¥ > 0 such that

(D + mc?* 1, + 31, @) — ap(D + meP ", o) <

DO |
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Then

CD,:v,t,z 1t7 @) +

B
DO | ™

(D +mc?®H 1, + 41, @) < ap(D +
€ + € <

=T — € = Tr — = xT .
2

DO | ™

Since oy (D) is a constant on each P!, by (O3) — strict monotonicity and the above

inequality,
mc” ! = inf{c € R: D + clyy € D'}

=inf{ce R: (D +cly,w) > x,}

> mCD,az,t,z + 7.

It is a contradiction since 4 > 0. Therefore, oy (D + mcP®% 1, w) > x for all w € PY.

Sufficiency. Since for all w € P! and n > 0, ay(D + mcP®41, — nly, w) < ,

we have mcP#4 <= inf{c € R: D + clyy € DL}

On the other hand, since for all w € P! and n > 0, ay(D + mcP®41, w) > x,

it implies that mc?® >= inf{c € R: D + cly € DL}, Finally,
{t} T

me? " =inf{c € R: D + clyy € DY'}.

]

Definition 5.0.8. A basic dynamic acceptability index is called ADCAI if it satisfies

the following two properties:

(09) Quasi-concavity. If ay(D,w) > = and ay(D',w) > x for somet € T, w € (,
D,D' €D, and x € (0,+0c], then ay(AD + (1 — X\)D',w) > x for all X € [0, 1];

(010) Dynamic consistency. Given two positions D, D" € D satisfying D;(w)

Di(w) for allw € Q, if there ezists a constant x € (0,4+00) and t € T such that

MCP#HE = MCP 1 then MCP#F = MCP' .
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Definition 5.0.9. A family of sets of probability measures (U”)ze(0,+00) 5 called in-

creasing if cond™ (U*) D cond""(UY), for all z >y >0, t € T and P! € Y.

Now, we shall introduce the representation theorem for ADCAIs in terms of a

sequence of dynamic consistent sets of probability measures?.

Theorem 5.0.3. A function o is an ADCAI if and only if there exists an increas-
ing sequence of closed and convex dynamic consistent sets of probability measures

(Uz)ze(0,400) Such that pf(D) defined as

PeUsy

T
pi (D) := maxE"[ — Z D,|F], (5.4)
s=t
18 continuous with respect to x, and
a(D) = sup{z € (0,+00) : p{(D) < 0}. (5.5)
Proof. Sufficiency. We shall show that « defined in (5.5) satisfies the properties
(01)-(010).

First, note that since (U, )ze(0,40) is increasing, p* defined in (5.4) is increasing

with respect to x as well.

(O1) — adaptiveness, (O2) — independence of the past, and (03.1) are similar

to the corresponding proof in Theorem 3.4.2.

We show that « satisfies (03.2). If ay(D,w) € (0, +00) for somet € T,D € D

and w € Q, then, for all constant ¢ > 0, (03.1) implies,
(D + clyy,w) > a(D,w) .

Denote by z§ := oy(D,w), we have 2§ € (0,4+00). If ay(D+clyy,w) = oau(D,w) = xf,

since p® is an increasing and continuous function on (0, +o00) with respect to x, by

3We refer to Definition A.0.7.
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(5.5) and Lemma B.0.2,
pfg(D +clpy,w) = pfow(D,w) =0.

By (H6) — translation invariance of p, we know that the above equation can not hold

true. Therefore, ay(D + clyy,w) > ay(D,w) for all constant ¢ > 0 and (03.2) holds.
For all t € T and s > t,

ar(1(s) = sup{z € (0, +00) : p(1¢sy) < O}

= N P —_ <
sup{z € (0, +00) {,%anE [—1|7R] <0}

= sup{z € (0,+00): =1 <0} = 00.
Hence, (0O4) — arbitrage consistency holds true.

Next, we show that « satisfies (O5). For all t € 7, Pl € ', w,& € P! and

s >t, by (H8), we have pf(—151(zy)(w) > 0 for all € (0, +00). By (5.5), we know

Ozt(—l{s}l{@}, w) = 0.

(O6) — scale invariance, and (O7) — translation invariance are similar to the

corresponding proof in Theorem 3.4.2.

We show that « satisfies (O8) — right continuity. By (O3) — strict monotonicity,

(08) holds when (D, w) = +00. When ay(D,w) € [0, +00), if lim ay(D+clyy,w) #
c—0

a(D,w), by (03.1), there exists a positive sequence (¢,)%; with lim ¢, = 07 and

€ > 0, such that

(D + cplpy,w) > au(D,w) + e, (5.6)
for all n € N. Denote a := ay(D,w). (5.5) gives
a= sup{x € (Oa _'_OO) . ptx(Daw) < O} )

which implies

a+7

pr H(D,w)>0. (5.7)
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Put a, := ay(D + ¢, 1, w), we have
an = sup{x € (0,4+00) : pj (D + c,1py,w) < 0}.
By (H4) — translation invariance of pf,
a, = sup{z € (0,+0) : pf(D,w) < ¢, }.

Then, for all n € N,

ap—=<

. Y(Dyw) <cp.

Since lim ¢, = 07, by (5.7), there exists N € N, such that 0 < ¢y < p?Jri(D,w).

n—oo

Then,

€ €
a+g T

AT Dw) > ey = iV (Dw).

Since pf(D,w) is a continuous and increasing function with respect to z,

€

a—+ ZCZN— 3

e |
IR

which implies,
€
a+e>a+ 3 > ay .

Hence,

a(D,w) 4+ €> (D + enlpy,w),

which contradicts (5.6). Therefore,

lim oy (D + clpy,w) = (D, w).

c—0F

(09) — quasi-concavity is similar to the corresponding proof in Theorem 3.4.2.

Last, we show that « satisfies (010). Given two positions D, D’ € D satisfying

Di(w) = Dj(w) for all w € Q, if there exists a constant « € (0,+00) and t € 7 such
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that MCP##1 = MCP***1 by Lemma 5.0.3, for each P/ e Yt and 5 > 0,
1 (D +me?" Ty w) > 2, g (D A me? T gy — il w) < o
a1 (D +meP P gy w) > 2, g (D + me? T gy =l w) < @
By (5.5), for w € P/,
sup{y € (0,400) : p{,1(D + mc”™ "1 4y, w) <0} >z (5.8)

If there exists @ € P/ such that pf, | (D +mcP® 141 4y @) > 0, by the continuity
of p* with respect to x € (0,400), we know there exists e > 0 such that p{ (D +

mc? gy, 0) > 0, which implies

sup{y € (0,400) : po1(D +mc?™ 1y, @) <0} <z —e<uz.
The above inequality contradicts (5.8). Hence, for all w € P/,

P (D + mCD’x’t+1’i1{t+1}, w) <0.
By (H4) — translation invariance of p”, it follows that
prq(D,w) < mePmbitt (5.9)

Since ayy1(D + me? ™ gy — nlgy, w) < x for all n > 0, by (5.5),

sup{y € (0,400) : oy (D + meP= 1L 1) — T yy,0) < 0) <z

which implies

P (D + mCD’x’tH’il{tH} - 771{t+1}7w) >0,
for all n > 0. Hence, by (H4) — translation invariance of p*, it follows that

D,x,t,z’(

pr1(D,w) > me w) —1.
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Take n — 0T, we have pf,,(D,w) > mc?* 1 Together with (5.9), p¥,,(D,w) =

D,zt+1,i D,z t+1,i

mc . Same with position D', we have pf, (D’,w) = mc . The argument

holds true for all P/ € T*!. Hence, for all w € Q,
ptx-i—l(Dvw) = pr(D',w) .
Since Dy(w) = Dj(w) for all w € Q, by (H7) — dynamic consistency of p?,
pi(D,w) = p; (D', w),
for all w € €.

Denote m(w) := pf(D,w) = p¥(D',w), then pf(D,w) — m(w) = 0. By (H4) —

translation invariance of p®, pf (D + mlyy,w) = 0. Then,
sup{y € (0,400) : p{(D + mly,w) <0} > .

By (5.5),
(D +mlyy,w) > x.

Also, for all n > 0,
pi(D,w) —m(w) +1=1.
By (H4) — translation invariance of p*,
pi (D +mlyy —nlgy,w) = pi(D,w) —m(w) +1=n>0.
By the continuity of p* with respect to x € (0, +00), there exists € > 0 such that
pffe(D + ml{t} - T]l{t}, w) >0,
which implies
sup{y € (0,+00) : p{(D+mly —nlpy,w) <0} <z —e<w.

By (5.5),

a(D+mly —nlp,w) <.
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Then, Lemma 5.0.3 indicates that MC”®! = m. Same with D’, we have MC""®! =

m = MCP*!(010) holds true for a.

Finally, we conclude that « satisfies the properties (O1) — (O10). Therefore,

a is an ADCAL
Necessity. Given an ADCAI o, we define u?(D) := MCP*!. By Definition
5.0.5 and Definition 5.0.7, for all w € €,

uj(D,w) =inf{c e R: ay(D + clyy,w) > x} . (5.10)

We first show that for every x € (0, 400), the function u” is a dynamic coherent
risk measure given by Definition A.0.8. We only need to show that u” satisfies all

properties (H1)-(H8) in Definition A.0.8.

(H1) — adaptiveness, (H2) — independence of the past, (H3) — monotonicity,
(H4) — translation invariance, (H5) — homogeneity, and (H6) — subadditivity are

similar to the corresponding proof in Theorem 3.4.1.
Now, we show that u” satisfies (H7). Fix t € {0,...,7 — 1} and D,D" € D
with D; = Dy and uf,_ (D) = uf ,(D'). By definition of u*, we can derive that
McD,:c,t-i—l _ McD’,:c,t-i—l )
By (010) — dynamic consistency of «,
MCD,x,t _ McD’,:c,t
which implies

uf (D,w) = uf(D',w).

Next, we show that u* satisfies (H8). For all t € 7, P! € T*, w,w € P}, and

()

s > t, by (O5) — relevancy of «a,

(=1 gy, w) =0, (5.11)
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Assume uf (—1(53 1z}, w) <0, by (5.10), it follows
inf{c € R: ou(—1gq 1oy + clyyy,w) > 2} < 0.

Then, for any ¢ > 0, by (O3) — strict monotonicity of «,

(1 liey + el w) 2 @,
Let ¢ — 07, by (O8) — right continuity for «, we conclude

a(—1l ey, w) = 6_1)1(1)1r (=Ll + Clyy,w) > 2 >0,
which contradicts (5.11). Therefore,
uy (—1gsyley,w) > 0.

From all above, we conclude that u* is a dynamic coherent risk measure for all
x € (0,+00). By Representation Theorem A.0.1 of dynamic coherent risk measure,

there exists a closed, convex and dynamic consistent set of probability measures

U, € P¢ such that

T
x _ Pr
uf (D, w) = max ¥ Z Dy|F](w). (5.12)
By Definition 5.0.5, D%’ C D}’ for all x >y > 0. Then, for any D € D,
{ceR:D—clyy €Dy} C{ceR:D—cly €Dy}

Thus,

uf(D,w) =inf{c € R: D + clyy € D'}
>inf{c e R: D +clyy € D'}
=ui(D,w).

By (5.12), for any D € D,

T T
maxE"[ - ) " D,|F] > max B[ — E;Dslft} :

PeU, Y
S=
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Then, Lemma 4.2.1 and Lemma 4.2.2 indicates that cond""(U®) 2 cond"’(UY), for all

x>y >0and P! € T'. Then, we know U is increasing with respect to z € (0, 00).

Now, we show that for any t € 7,z € (0,+00),w € Q and D € D, uf(D,w) is
continuous with respect to x. For convenience, we denote f“P(z) := u¥(D,w). By
(5.10),

P () = inf{c € R: ay(D + clyy,w) >z} (5.13)

We observe that P (z) is increasing with respect to z. Denote
cy ==sup{c € R: ay(D + clyy,w) = 0},
co =inf{c e R: (D + clyyy,w) = o0},

By (03.2) and (O8), we know oy (D + clyy,w) is right continuous and strictly in-
creasing with respect to ¢ on (¢2,,¢g). Moreover, (O4) and (O5) imply ¢, c§ are

finite.

If f<4P is not continuous at a point zy € (0,00), then there are two distin-

guished cases.

First case, lim,_,+ fetP(z) #£ f0P (). Since f<4P(x) is increasing, there exist a
n > 0 and a sequence {¢,}°°,, such that ¢, — 07, and [P (2o +¢,) > fo4P(z0) +n

for all n € N. By (5.13), it follows

inf{c e R: oy(D+ clyy,w) > zg+ €, > inf{c € R: oy(D + clyy,w) > xo} + 1,
for all n € N. Then,
inf{c € R: ou(D+clyy,w) > x0+€,} — g > inf{c € R: ay(D +clyy,w) > w0} + g .
Hence, there exist ¢y, ¢y such that

inf{c € R: (D + clyyy,w) > 20 + €, } — g > > o

> inf{c € R (D + elgy,w) 2 w0} + 3
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for all n € N. From the left hand inequality, by (O3) — strict monotonicity of a, we
conclude

(D +clyy,w) <zo+e, i=1,2;n€eN.

Passing to the limit in the last inequality with n — oo, we have, for ¢ = 1, 2,
(D + cilyy,w) < . (5.14)
On the other hand, since
c1 > ¢ >inf{c € R: (D + clyyy,w) > w0} + g,
we have ay(D + ¢;1gy,w) > @, for i = 1,2. Together with (5.14), it follows that
(D4 cilpy,w) = ae(D + colyyy,w) =20, ¢ < 2,
which contradicts (03.2) — strict monotonicity for a.

Second case, lim fetP(x) # fetP(xg). Since f<4P(x) is increasing, there exists

T—T
n > 0 and a sequence {¢,}°° ,, such that e, — 0%, and <P (xg+¢,) < fo4P(29) —n

for all n € N. By (5.13), it follows that
inf{c € R: (D + clyyy,w) > 2o+ 6,} <inf{c € R: ay(D + clyy,w) > xo} — 1,

for all n € N. Then,

inf{c € R: (D +clyy,w) > 29 — €} + g <inf{c € R: ay(D +clyy,w) > 20} — g ,
Hence, there exists c3 such that
inf{c € R: (D + clyyy,w) > 29 — €} + g <3<

inf{c € R: ay(D + clyyy,w) > xo} — g ,

for all n € N. From the left hand inequality, we conclude that

(D4 cslyy,w) > 29 —€,, n€N.
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Passing to the limit in the last inequality with n — oo,
(D + cslpy,w) > . (5.15)

On the other hand, since

cg < inf{c € R: ay(D + clyy,w) > 20} — g,
we have ay(D + c3lyy,w) < o, which contradicts (5.15).

From the above two cases, we know

lim inf{c € R: (D + clyyy,w) > 2} =inf{c € R: (D + clyyy,w) > 20},

T—T0

which implies
lim uf(D,w) = ui°(D,w).

Tr—T0

Finally, by similar argument as Theorem 3.4.3, we can derive that

ay(D,w) = sup{z € (0,+00) : uf(D,w) < 0}.
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CHAPTER 6
EXAMPLES AND APPLICATIONS

In Chapter 1 two classical static acceptability indices were introduced: Gain
Loss Ratio and Risk Adjusted Return on Capital. In this chapter, we will generalize

these static indices to dynamic versions, and we will examine if these dynamic versions

are DCAIs or ADCAIs.

We will present an application of dynamic acceptability indices in the context
of optimal portfolio selection problem. The version of optimal portfolio selection
problem that we address, amounts to dynamic selection of portfolio of financial assets
to maximize expected value of terminal utility of the portfolio. Investors may choose
their optimal portfolios relative to various utility functions. We propose to use dGLR
defined in the next section to discriminate between these optimal portfolios, in the
sense of deciding which utility function is most preferable to be used in the problem

of optimal portfolio.
6.1 Examples and Counterexamples

Gain Loss Ratio (GLR), which was presented in Definition 1.0.2, is a typical
return-to-risk type of performance measure, very popular among practitioners. A

natural generalization of GLR to dynamic framework is defined as follows.

Definition 6.1.1. Dynamic Gain Loss Ratio.
For allt € T and D € D,

E[T_, Dg|F . T
st 22l , if E[ZS: Ds|F] >0,
dGLR,(D) = { EI(XDs) |7 t (6.1)

0, otherwise ,

where (3.1, D)™ := max{— Y_"_, Dy, 0}. By convention, dGLR(0) = +o0.

Remark 6.1.1. Note that taking T = 1, and letting X = Doy + D1, dGLRy becomes
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the static GLR given in Definition 1.0.2.

Proposition 6.1.1. dGLR is a normalized and right-continuous dynamic coherent

acceptability index.

Proof. Since dGLR(1g;) = +o00 and dGLRy(—1) = 0, we have that dGLR is

normalized.

Next, we show that dGLR is right-continuous. Fixed any ¢t € 7 and D € D. If
E[>!_, Dy|F] > 0, then for any ¢ > 0, E[S°7_,(D + cly), | F] = E[YL_, Dy | F] +

c > 0. Hence,
lim dGLR¢(D + clyy) = lim ]E(Zth Da|72) +
c=0% =0t B({D i Ds + ¢}~ | F)
_ E(C,DiF)
E({X o Do}~ |F)
If E[>L, D, | F] =0, dGLR,(D) = 0. For any ¢ > 0, E[>."_,(D + clgy)s | Fi] > 0.

Hence,

ESY . D
lim dGLR,(D + ¢lpy) = lim (ZTs:t o|F) +c
c—0F —0t E({>"._, Ds + c}~|F)
e — 0= dGLR,(D).
—0t B({>,_, Ds + ¢}~ |F)

If EY.", D,|F] < 0, dGLR,(D) = 0. For some small enough ¢ > 0, we have that

E[>"7_,(D + clgy)s | Fi] < 0. Hence, lim, g+ dAGLR,(D + clgy) = 0 = dGLR,(D).

Now, we show that dGLR satisfies (D1)-(D7). Adaptiveness (D1), and in-
dependence of the past (D2) of dGLR follow directly from the definition of dGLR.
Monotonicity (D3), scale invariance (D4), and quasi-concavity (D5) are verified as in

static case with expectation replaced by conditional expectation (for details see [14]).

For any F;-measurable random variable m, we have

T

T T
Z(D + ml{s})l = ZDZ +m = Z(D + ml{t})l .
=t I=t

=t
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Then,
T T

EQ) (D +mlghlF) =B (D +mlg)lF),

=t =t

and
T T

E((D (D +mlpy)) |F) = E(Q (D +mlw)) | F),
1=t I=t
for all t € 7, D € D. This proves translation invariance.
Finally we will show that dGLR satisfies version (D7-II) of dynamic consis-

tency. For any t € 7 and D € D, if Dy(w) = 0 for all w € Q, all we need to prove is

that for each P! € T,

1p_t min dGLRtJrl(D, W) S 1PfdGLRt(D> S 1P.t max dGLRt+1 (D, w)

' weP! t weP!
Denote by mb := max dGLRy41(D,w). If m»" = +oo, the above right inequality is
obviously satisfied. If mtZ =0, then dGLR;41(D,w) = 0 for all w € P!. By Definition
6.1, we can observe that dGLR,(D,w) = 0 for all w € P! as well.

If m' € (0,00), we have dGLR+1(D,w) < m** for all w € P/. By Definition
6.1 of dGLR, for all w € P},

E( Y DilFr)w) <m" -E({ Y Dy} |Frun) (W),

s=t+1 s=t+1

and since D; = 0, we have

E() DJF)=E(Y_ DF)=EE(Y_ DF)lF).

s=t+1 s=t+1

Hence, for all w € P},

E(Y | Do|F)(w) SE(MYE{ Y Do} |Fir)|F) (w) =m"E({ Y D} |F)(w)

s=t+1 s=t+1
T
=m"E({)_ D,}"|F)(w),
s=t
which implies that dGLR(D,w) < m"". Then,

1P,LthLR’t(D) S 1Pt max dGLRt+1 (D, W) .

' weP!
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By similar argument, we can show that

1Pt min dGLRt+1 (D, CL)) S 1PthGLRt(D) .

' weP}

Hence, (D7-1I) holds true.

Using Corollary 3.2.3, we conclude that dGLR is a DCAL m

We shall demonstrate now, by means of an example, that dGLR does not
satisfy condition (O10) — dynamic consistency of ADCAIs, implying that it is not an
ADCAL Let us consider a two-period model with four states: = {wy,wq, w3, w4}.
Assume P is the reference probability measure with P(w;) = 0.2, P(wy) = 0.3, P(w3) =
0.1 and P(wy) = 0.4. Denote by F = {Fo, F1, Fo} the filtration. Fy = {0,Q}; F»

is generated by the partition {{W17WQ}, {wg,w4}}; F> is generated by the partition

{{wl}, {ws}, {ws}, {w4}}. Two dividend processes D and D’ are shown in Table 6.1
and Table 6.2.

Table 6.1: Dividend Process D Table 6.2: Dividend Process D’
w  Do(w) Di(w) Ds(w) w  Dy(w) Di(w) Dy(w)
wp; 0.5 1 11 w; 0.5 2.2 2.6
wy 0.5 1 -5 wy 0.5 2.2 -3
wy 0.5 -3 -8 wy 0.5 -4 25
wg 0.5 -3 3 wg 0.5 -4 -3

By direct calculation, we have* MCPO%Y () = MCP 05 (w;) = —0.923 for
i = 1,2 and MCP%%(w;) = MCP' 05 (w;) = 3.001 for i = 3,4. We also have
MCP039(,) = 0.375, but MCPP50(w;) = 0.649 # MCP0%%(w;) for i = 1,2,3,4.
Note that Dy = Df, = 0.5. Hence, dGLR does not satisfy (O10) — dynamic consistency

of ADCAI, and it is not an ADCAL

4Recall Definition 5.0.7 for MC
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Taking into account the form of the dynamic acceptability index as in (4.30),
and the form of the static one as in (2.5), the natural question arises: is it possible in
general to ‘dynamize’ a static coherent acceptability index by taking the appropriate
conditional expectation of the cumulative future cash-flow? For example, to dynamize
GLR, we considered the static GLR, and we replaced in it the expectation with
conditional expectation, and the terminal value with the future cumulative cash-flow.

However, this procedure may not lead to desirable results in general, as shown below.
According to the above idea the natural extension of static Risk Adjusted
Return on Capital (RAROC) to a dynamic setup should have the following form:

Definition 6.1.2. Dynamic Risk Adjusted Return on Capital
Forallt € {0,1,...,T} and D € D,

E(C 1, Ds|F) T
dRAROC, (D) = { ~depPelzame o7 when E(3,-, Ds| 1) > 0
t =

0, otherwise

with convention that ARAROC(D) = +oo if énfg EQ[Zstt Dg|F] > 0.
S

As it is seen from Figure 6.1, which represents a numerical example, dRAROC
does not satisfy property (D7), dynamic consistency. In this example, we consider
Q = Pc. Assume that the states are labeled from top to bottom wq,ws, ..., ws. Note
that, Dy(wy) = 0.2 > 0, i.e. positive cashflow at time t = 1 and state wy, but
dRAROC; (w;) = 0.31 < 0.33 = dRAROC,(wy), as well as dRAROC; (w;) = 0.31 <
0.32 = dRAROC;(wy). Thus dRAROC does not satisfy (D7) and hence it is not a
DCAL

For comparison reasons, we also present in Figure 6.1 the values of dGLR,

which is a DCAIL
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t=0 t=1 t=2 t=3

dGLR

dRAROC

Figure 6.1: dARAROC vs dGLR

6.2 Optimal Portfolio Selection and DCAIs

Optimal portfolio selection problem amounts to determining a strategy for
selection of a mix of financial securities that optimizes a given optimization crite-
rion. Typically, optimization criteria are given in terms of utility functions, and the

objective is to maximize the expected utility of terminal value of the portfolio.

Different utility functions usually give rise to different optimal portfolios. Dy-
namic acceptability indices can be used as a tool to select the ‘best’ optimal portfolio
given a set of utility functions. In this section, we will apply our dGLR to discriminate

between optimal portfolio strategies corresponding to various utility functions.
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The definition of a utility function that we shall use here is the following:

Definition 6.2.1. (¢f. [19]) A wutility function is a function u : R — R such that it

18 twice differentiable, concave, and strictly increasing.

From now on we fix an investment horizon 7" and a filtered probability space

(Q,F,P), where F = (F;, t =0,1,...,T) is the relevant filtration.

We consider a financial market consisting of one risky asset, whose price 57 is
an F-adapted process, and the bank account with a constant price process Sy(t) = 1
(this corresponds to assuming zero interest rate). A trading strategy (or a portfolio)
H = (Hy, H,) is a vector of F-predictable stochastic processes® H, = {H,(t);t =

1,2,..., T}, n=0,1.

Assuming zero interest rate, Hy(t) should be understood as the amount of
money invested in the bank account from time ¢ — 1 to time ¢, whereas H;(t) is the
number of units of risky asset S; that the investor holds from time ¢t — 1 to time ¢.
Note also that H,(t) < 0 corresponds to borrowing money from the bank; H;(t) < 0

corresponds to selling short risky asset.
Definition 6.2.2. (¢f. [41]) Given a trading strateqgy H, the value process V =
{Vi;t € T} is a stochastic process defined as

V= (6.2)

Ho(t) + Hy(t)S:(t), t>1.
Definition 6.2.3. (¢f. [{1]) For a trading strateqgy H with the value process V', the
dividend process D = {Dy;t € T} is a stochastic process defined as Dy = Vi, — V4

fort=1,2,--- T with Dy = 0.

5A stochastic process H, is said to be predictable with respect to the filtration IF
if each random variable H,(t) is measurable with respect to F;_; forallt =1,2,--- | T.
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Definition 6.2.4. (¢f. [41]) A trading strategy H is said to be self-financing if

V,=Ho(t+1)+ Hy(t+1)Sy(t), t=1,2,--- ,T—1. (6.3)

Intuitively, self-financing means that if no money is withdrawn from or added
to the portfolio between t = 0 and ¢t = T', then any change in the portfolio’s value

must be due to a gain or loss in the investments.

Traditionally, expected utility has been used as a performance measure for

financial portfolios in the following sense.

Definition 6.2.5. (c¢f. [41]) Given a self-financing trading strategy H, the expected
utility of terminal wealth Vi 1s defined as,

Eu(Vy) = 3 Pw)u(Ve(w)),

weN

where P is the reference probability measure and u is the given utility function.

Denote by H the set of all self-financing trading strategies. Given an ini-
tial wealth v, the optimal portfolio problem is therefore to choose the optimal self-

financing trading strategy H by solving the following optimization problem:

;

maximize Eu(Vr)

subject to  Vy=w (*)

HecH

\
In each of the following examples, we shall consider a pair of utility functions
and we shall solve the optimization problem (*) to derive two optimal portfolios.

Then, we will apply dGLR to discriminate between the two.

We will denote by (Hg, H) optimal strategy corresponding to each utility
function. The values of H; are shown in every example. H{ can be calculated through

HY and initial wealth V{ using (6.2) and (6.3) under the assumption of self-financing.
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6.2.1 Two-Period Examples.

Example 6.2.1.

Table 6.3: Security Price Process

w So(w) Si(w) Si(w) P(w)
w1 11 13 20 0.25
Wo 11 13 12 0.25
w3 11 8 12 0.25
Wy 11 8 6 0.25

In this example, we consider a two-period model with four states: Q =
{w1, ws,ws,wy}. The security price process and reference probability measure P are
given in Table 6.3. Assume zero interest rate and the initial wealth Vj = 5. We con-
sider two classical utility functions: exponential utility function u(v) = 1 — exp{—v}

(cf. [16]) and quadratic utility function u(v) = v — $v* (cf. [16]).

Solving (*) for the exponential utility by the general optimization method,
we find the optimal investment strategy being given as Hj(1)(w;) = 0.137, for i =
1,2,3,4; H¥(2)(w;) = —0.116, for i = 1,2; H(2)(wi) = 0.116, for i = 3, 4.

Solving (*) for the quadratic utility by the general optimization method, we
find the optimal investment strategy being given as Hj(1)(w;) = —0.400, for i =
1,2,3,4; H(2)(w;) = 0.160, for i = 1,2; Hy(2)(w;) = —0.480, for i = 3, 4.

Table 6.4 and Table 6.5 display the optimal value processes. We would like to
determine which optimization criterion, the one corresponding to exponential utility
or the one corresponding to quadratic utility is more preferred. In other words, we
would like to be able to determine, which of the utility criteria ultimately leads to a
better trade-off between the return and the risk of the optimal portfolio. However,

it does not seem to be possible to make such determination by merely looking at the
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Table 6.4: Optimal Portfolio Value Table 6.5: Optimal Portfolio Value
Process for Exponential Utility Process for Quadratic Utility
w Vw) Viw) Va(w) w Viw) Viw) Vi(w)
wi;  5.000 5.275 4.466 wi;  5.000 4.200 5.320
wy  5.000 5.275 5.390 ws  5.000 4.200 4.040
wz 5.000 4.588 5.050 ws 5.000 6.200 4.280
wy 5.000 4.588 4.357 wy 5.000 6.200 7.160
Table 6.6: dGLR Process for Optimal Table 6.7: dGLR Process for Optimal
Portfolio V' Portfolio V'
w dGLRg(w) dGLR;(w) w dGLRg(w) dGLR;(w)
w1 0.000 0.000 w1 0.476 0.000
Wo 0.000 0.000 W 0.476 0.000
w3 0.000 0.000 w3 0.476 2.000
Wy 0.000 0.000 Wy 0.476 2.000

optimal values of the wealth process displayed in tables 6.4 and 6.5. Thus, we need

to use another tool for this purpose. The tool we propose to use is the dGLR.

Recall that dGLR is a dynamic coherent acceptability index. Table 6.6 and
Table 6.7 display values of the dGLR processes corresponding to the two optimal
portfolios V' and V’. By examining these two tables we observe that at each state,
the dGLR for portfolio V"’ is greater than or equal to the dGLR for portfolio V. Hence,
dGLR indicates that for this market conditioning, the optimal portfolio corresponding
to the quadratic utility provides a better trade-off between risk and return than the

one corresponding to the exponential utility.

Example 6.2.2.

In this example, we consider the same model as in Example 6.2.1, but with
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Table 6.8: Security Price Process

w  Sp(w) Si(w) Sa(w) P(w)
w1 11 13 20 0.1
Wo 11 13 12 0.2
w11 8 12 03
W4 11 8 6 0.4

different reference probability measure as shown in Table 6.8. Assume zero interest
rate and the initial wealth V[, = 5. We consider the same pair of utility functions:
exponential utility function u(v) = 1—exp{—wv}, and quadratic utility function u(v) =

’U—E’U.

For the exponential utility, the optimal investment strategy is given as
Hi(1)(w;) = —0.270, for ¢« = 1,2,3,4; H{(2)(w;) = 0.157, for i = 1,2; H{(2)(w;) =
0.068, for ¢ = 3,4, and for the quadratic utility, the optimal investment strategy
is given as Hy(1)(w;) = —0.215, for i = 1,2,3,4; H{(2)(w;) = 0.140, for i = 1,2;
Hi(2)(w;) = 0.022, for i = 3, 4.

Table 6.9: Optimal Portfolio Value Table 6.10: Optimal Portfolio Value
Process for Exponential Utility Process for Quadratic Utility
w Vw) Viw) Va(w) w Viw) Viw) V()
w;  5.000 4.460 5.559 wiy  5.000 4.570 5.551
wy  5.000 4.460 4.303 we  5.000 4.570 4.429
ws 5.000 5.810 6.082 ws 5.000 5.646 5.734
wy 5.000 5.810 5.674 wg H.000 5.646 5.602

Table 6.9 and Table 6.10 display the optimal value processes. Similarly to the
previous example, it is not possible to determine which portfolio performs better (as a

combined measure of both return and risk) by just looking across all numbers. Using
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Table 6.11: dGLR Process for Optimal Table 6.12: dGLR Process for Optimal
Portfolio V Portfolio V'
w  dGLRg(w) dGLR;(w) w  dGLRg(w) dGLR;(w)
w1 3.664 0.000 w1 3.520 0.000
Wo 3.664 0.000 W 3.520 0.000
w3 3.664 Inf w3 3.520 Inf
Wy 3.664 Inf Wy 3.520 Inf

dGLR (displayed in Table 6.11 and Table 6.12), we note that dGLR for portfolio V' is
greater than or equal to the dGLR for portfolio V’. Hence, for this specific example,
dGLR indicates that the optimal portfolio corresponding to the exponential utility
provides a better trade-off between risk and return than the one corresponding to the

quadratic utility.

Conclusion 6.2.1. By using dGLR, Example 6.2.1 indicates that quadratic utility
function gives an optimal portfolio with better performance, whereas Example 6.2.2
shows that exponential utility function gives an optimal portfolio with better perfor-
mance. We conclude that utility function can not be the unique factor in selecting the

optimal portfolio.

6.2.2 Four-Period Binomial Model. The binomial model is an important model

for the price evolution of a risky asset.

At each period there are two possibilities: the asset price either goes up by
the factor u (u > 1) or it goes down by the factor d (0 < d < 1). The probability of
an up move during a period is equal to the parameter p, and the moves over time are

independent of each other.

Example 6.2.3. Consider a four-period binomial model with d = 0.95, u = 1.2,

p=0.5 and S1(0) = 10. We assume zero interest rate and the initial wealth Vi = 20.
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Two classical utility functions are examined in this example: exponential util-
ity function u(v) = 1 — exp{—v} and logarithmic utility function u(v) = log(v) (cf.

[16]).

As shown in [41], the optimization problem (*) can be solved by the backward
induction method. For utility function u(v) = 1 — exp{—v}, we find the optimal
portfolio to be Hj(t)(w;) = % forall t = 1,2,3,4 and i = 1,2,---,16. For
utility function u(v) = log(v), we find the optimal portfolio to be Hj(t)(w;) = 18.75

forallt=1,2,3,4and 7 =1,2,---,16.

Similarly to the previous example, by merely looking at the optimal value
processes displayed in Figure 6.2, it is hard to determine which portfolio has better
performance. Using dGLR, we find that at each node displayed in Figure 6.3, the
dGLR corresponding to the logarithmic utility is greater than or equal to the dGLR
corresponding to the exponential utility. Hence, dGLR indicates that the optimal
portfolio selected by logarithmic utility provides a better trade-off between risk and

return than the one corresponding to exponential utility.

Example 6.2.4. We consider another four-period binomial model, but with a different
set of parameters d = 0.92, u = 1.02, p = 0.65 and S1(0) = 10. We still assume zero

interest rate and the initial wealth Vi = 20.

The same pair of utility functions are examined in this example: exponential

utility function u(v) =1 — exp{—v} and logarithmic utility function u(v) = log(v).

—7.67
S1(t—1)(w;)

for all t = 1,2,3,4 and ¢ = 1,2,--- ,16. For utility function, we find the optimal

For utility function, we find the optimal portfolio to be Hj (t)(w;) =

portfolio to be H{(t)(w;) = —9.375 for all t = 1,2,3,4 and : = 1,2,--- | 16.

By merely looking across all the numbers the Figure 6.4 (optimal value pro-
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=0 =1 =2 t=3 t=
24.436
23.327
Value Process for Exp 23.050
Walue Process for Log
22.218
| 51.200 | 23.050

21.941 63.972
46.826 21.664

21.108
[ 35.000
20.000
19.723
| 16.250 |
19.445

Figure 6.2: Value Processes for Optimal Portfolios

cesses), it is not possible to determine which utility function leads to a better optimal

portfolio. However, by examining the dGLR processes shown in Figure 6.5, we note
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t=0 t=1 t=2 t=3

dGLR Process for Exp
diGLR Process for Log

24.000

Figure 6.3: dGLR Processes for Optimal Portfolios

that at most nodes, the dGLR corresponding to the exponential utility is greater than
or equal to the dGLR corresponding to the logarithmic utility. Hence, for this spe-

cific example, we conclude that the optimal portfolio corresponding to the exponential
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t=0 t=1 t=2 t=3 t=
19.540
Value Process for Exp 14.262
Value Process for Log
19.693
16.213
20.307
24.016
18.847
20.307
24.018
20.460
25775
21.074
32.813
20.000
20.000
20.307
24.016 \5‘ 20.921
31.194
20.614
27.500

Figure 6.4: Value Processes for Optimal Portfolios
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t=0 t=1 t=2 t=3

dGLR Process for Exp
dGLR Process for Log

Figure 6.5: dGLR Processes for Optimal Portfolios

utility provides a better trade-off between risk and return.

Examples 6.2.3 and 6.2.4 together support Conclusion 6.2.1 that utility func-

tion can not be the unique factor in selecting the optimal portfolio.
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6.2.3 Discrimination Between Optimal Portfolios Corresponding to Dif-
ferent Risk Aversion Coefficients. Now, we shall apply dGLR to discriminate
between the optimal portfolios corresponding to different risk aversion coefficients for
a certain class of utility functions. The risk aversion is a measure of investor’s general

preference for certainty over uncertainty, defined as follows:

Definition 6.2.6. For a given utility function u(v), the coefficient of relative risk

aversion s defined as,

vu(v)
R(v) = —
(U) U//(/U)
We focus on discussion in case of isoelastic utility function u(v) = 7’11:; (cf.

[40]). The relative risk aversion for such utility function is equal to 7.

Example 6.2.5. Assume a four-period single stock model with sixteen states given
in Figure 6.6. We assume that at each node the probability for going up and going

down 1s 0.5. Suppose that the investor starts with an initial wealth Vo = 20.

We find the optimal portfolios that correspond to the relative risk aversion

coefficients » = 3 and r = 9, respectively.

By the backward induction method (see for instance [41] p.153), we can derive

the holdings of assets of the optimal portfolio at each state and time instant:

St [(St*SZiﬂ ﬂ)% _ 1}

Si1—Se p

Hl(t> = 1 1 1 (64)

u T 1-p\+
St = Si = (St = %) 7 (S = 958) T (58)
where S, is the stock price at time ¢, p is the up probability and S}, ; (up price) and

d . . .
S¢,1 (down price) are two successive prices.

The values of optimal portfolios are summarized in Figure 6.7. By merely
looking at the table, it does not seem to be possible to determine which utility criteria
ultimately leads to a better trade-off between the return and the risk of the optimal

portfolio.
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We will apply dGLR to analyze the acceptability of this two portfolios. The
computed values of dGLR processes that correspond to these portfolios are displayed
in Figure 6.8. By examining the table we observe that at all states, the dGLR for
portfolio corresponding to r = 9 is greater than the dGLR for portfolio corresponding
tor = 3. Hence, dGLR indicates that for this particular market, the optimal portfolio
corresponding to relative risk aversion coefficient » = 9 provides a better trade-off

between risk and return.

However, as next example will show, a higher risk aversion coefficient does not
necessarily imply a better performance, with performance understood in the sense of

dynamic acceptability indices such as dGLR.

Example 6.2.6. We consider a different stock price evolution as in Figure 6.9, and
a different probabilities of going to an up state to 0.65 and respectively 0.35 of going

to a down state.

Using (6.4), we find the optimal portfolios that correspond to the relative risk

aversion coefficients r = 3 and r = 9. The results are displaced in Figure 6.10.

Similarly as above, by visual inspection of the values of the optimal portfolios,
it is not clear what portfolio is more. However, computing dGLR (see Figure 6.11),
we notice that the dGLR for portfolio corresponding to r = 3 is greater than or equal
to the dGLR of the portfolio corresponding to r = 9. Hence, for this specific example,
dGLR indicates that the optimal portfolio corresponding to r = 3 provides a better

trade-off between risk and return.

Conclusion 6.2.2. Fxamples 6.2.5 and 6.2.6 imply that risk aversion coefficient can
not be the unique factor in selecting the optimal portfolio (from point of view of ranking

portfolios by a dynamic acceptability indez).
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t=0 =1 =2 =3 =

Figure 6.6: Security Price Process
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t=0 =1 =2 =3 t=
24.103
24.103 [ 21.253 |
Value Process for r = 3 24.103
Value Process forr = 9
24.103
[ 21.253 | 24.103
PYRTE [ 21.253 |
18.836
[ 19.652
20.000
25.819
28.251
25.563 | 22.504 |
24,667
26.102
[ 21.832

Figure 6.7: Value Processes for Optimal Portfolios
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t=0 t=1 t=2 t=3

dGLR Processforr=23
dGLR Process forr=9

Figure 6.8: dGLR Processes for Optimal Portfolios
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=0 =1 =2 t=3 =4

Figure 6.9: Security Price Process
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=0 =1 =0

Value Process forr= 3

Value Process forr=9

18.818
19.630
18.296
19.786
20.728
20.251
20.000
20.000
25.044
21.562
24.221
21.287
23.399
21.012

Figure 6.10: Value Processes for Optimal Portfolios
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t=0 =1 t=2 =3

dGLR Process forr =3

dGLR Processforr=9

Figure 6.11: dGLR Processes for Optimal Portfolios
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CHAPTER 7
FUTURE WORK

In this work, we studied dynamic coherent acceptability indices assuming a
finite probability space and a finite discrete time space. An open research problem is
to extend the theory developed here to the case of infinite probability space and/or

continuous time.

Most of our results can be extended in a direct way to the case of general
probability space. This requires techniques of general probability theory to be used.
In particular, one will not be able to work with partitions any more, and the general

theory of filtrations will need to be used instead.

The extension to continuous time space is much more delicate, as this will

need to employ techniques from general theory of stochastic processes.

One of the main research objectives is to construct examples for DCAIs. In
this thesis, we extended GLR to the dynamic setup in a natural way and showed
that the dynamic GLR (dGLR) is indeed a DCAI. Besides GLR, some other coherent
acceptability indices such as AI'T, AIW, AIMIN, AIMAX, AIMINMAX, AIMAXMIN
were introduced in [14]. Hence, a natural research problem is to look for their natural
counterparties in dynamic framework, and then examine if these dynamic counterpar-
ties are DCAIs. Inspired by the representation theorem for DCAIs, another way to
construct the examples is to find new examples for dynamically consistent sequences

of sets of probability measures.

As has been recently demonstrated by Cherny and Madan [15] acceptability
indices may play an important role in the area of so called conic finance, which studies,
among others, the questions of formation of bid- and ask- prices in illiquid markets.

Cherny and Madan use static acceptability indices in their approach to conic finance,



124

which may lead to pricing, which is inconsistent in time. Therefore, an important
research topic will be to study use of dynamic acceptability indices in conic finance,

with a view at developing the theory of time-consistent pricing and hedging.
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APPENDIX A
DYNAMIC COHERENT RISK MEASURES ACCORDING TO RIEDEL
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In this appendix, we give an overview of DCRMs introduced by F. Riedel in
[42]. The main difference between Riedel’s and our theory on DCRMs is the dynamic
consistency property. Corollary 3.3.1 has shown that our dynamic consistency (A7)
is weaker than Riedel’s (A7-1) (or (H7) in this appendix). Therefore, set of examples
for our theory is richer. More importantly, the weaker dynamic consistency leads
to an if and only if duality between dynamic acceptability indices and dynamic risk

measures.

We assume the same mathematical setup and notations as in Section 3.1. To
avoid technical problems, we also assume zero interest rate, whereas in [42] interest

rate is not necessary to be zero.

Definition A.0.7. A set of probability measures Q C P¢ is dynamic consistent if it
is of full-support® and for allt € T, X € G,

in Eq[X| ;] = min Eq [ min Ey[X .
min Eq[X| 7] = min Eq [ min Bu[X|Fi1]| 7]

We shall mention that the above definition is shown as a lemma in [42], which is
equivalent to the original definition of dynamic consistent set of probability measures

in [42].

Definition A.0.8. Dynamic coherent risk measure is a function p: 7T x D x Q — R

that satisfies the following properties:

(H1) Adaptiveness. For allt € T and D € D, p(D) is Fi-measurable;

(H2) Independence of the past. For all D,D" € D andt € T: if Ds(w) = D (w)

for all s >t and all w € Q, then p(D,w) = p(D’',w);

(H3) Monotonicity. Given D, D" € D, if Diy(w) > Dj(w) for allt € T, w € 2, then
pt(Daw) S Pt(D/aW) fOT all w € Q;'

6Recall the Definition 4.1.2
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(H4) Translation invariance. p,(D +mly) = pi(D) —m for everyt € T, D € D,

Fi-measurable random variable m, and all s > t;

(H5) Homogeneity. p;(AD,w) = Apy(D,w) for all X > 0, D € D, t € T, and

w e Q;

(H6) Subadditivity. p,(D+ D',w) < pi(D,w) + pi(D’,w) for allt € T, D, D' € D,

and w € §;

(H7) Dynamic consistency. For all timest =0,...,T—1 and positions D, D" € D
with Dy = D the following holds true: piyy1(D,w) = pr1 (D' w) for allw € Q

implies py(D,w) = p(D',w) for allw € Q;

(H8) Relevancy. For allt € T, Pl € ', w, 0 € P!, and s > t,
pe(—1gspLgay) (W) > 0.

In [42] the author established the following representation theorem for DCRMs

in terms of a closed, convex and dynamic consistent set of probability measures.

Theorem A.0.1. p is a dynamic coherent risk measure if and only if there exists a

closed, convex, and dynamic consistent set of probability measures Q € P¢ such that

T
pi(D) = maxEq| - ; D,| 7]
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APPENDIX B
TECHNICAL RESULTS
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We present here some important technical results which are necessary through-

out this thesis.

Lemma B.0.1. Let f be a real-valued function defined on a linear vector space X,

and let us assuming that B is a subset of X.

(1) If f(x) > ¢ for all x € B, where ¢ € R, then inf,cp f(x) > c. If f(x) < ¢ for all

x € B, where ¢ € R, then sup,.p f(z) < ¢
(2)
sup (f(z) + g(x)) < sup f(z) +sup g(x),

z€B zeB zeB

inf (f(z) +g(x)) = inf f(x) + inf g(z).

Proof. (1) is a direct result from the definitions of infimum and supremum.

(2) is the direct result of (1) by noting that for all x € B,

f(x) +g(x) < sup f(z) +sup g (),

zeB zeB
f(x) + g(z) = inf f(z) + inf g(z).

]

Lemma B.0.2. If f is a real valued function, increasing and continuous on an open

interval (a,b), such that
sup{z € (a,b) : f(x) <0} =0 € (a,b),

then f(xq) = 0.

Proof. If f(z9) < 0, since zo € (a,b), f(x) is continuous at zg, and there exists

n > 0 such that zo +n € (a,b) and f(zo+n) — f(zo) < —3f(z0). This implies that
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f(@o+mn) < 5f(z0) <0. Then,
sup{z € (a,b) : f(z) <0} > x0+n> x0.
This contradicts the fact that sup{z € (a,b) : f(z) <0} = x. Hence, f(zq) > 0.

If f(x9) > 0, there exists € > 0 such that f(zo —€) — f(z0) > —3f(20), which

implies f(zo — €) > 5 f(x9) > 0. Then, since f(z) is increasing,
sup{z € (a,b) : f(x) <0} <zg—€< g,

which contradicts the fact that sup{x € (a,b) : f(z) <0} = xo. Hence, f(zo) =0. O

Finally, we present the Separation Hyperplane Theorem, which we use to prove
the representation theorems for dynamic coherent risk measure and dynamic coherent
acceptability index. For our purpose, we present a simplified version of this theorem,

and for more details, see for instance Chapter 3 in [45].

Definition B.0.9. Let A and B be two subsets of n-dimensional space R™. The sets
A and B are called strongly separated if there exists a p € R™ such that
infp-z>supp-y.

Theorem B.0.2. Let A and B be disjoint nonempty subsets of R™. If both A and B
are closed and convex, then there exists a nonzero p € R™ that strongly separates A

and B.
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