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ABSTRACT

This thesis presents a unified framework for studying coherent acceptability

indices in a dynamic setup.

We study dynamic coherent acceptability indices and dynamic coherent risk

measures. In particular, we establish a duality between them. We derive representa-

tion theorems for both dynamic coherent acceptability indices and dynamic coherent

risk measures in terms of so called dynamically consistent sequence of sets of proba-

bility measures.

In addition, we present an alternative approach to study dynamic coherent

acceptability indices and the representation theorem.

Finally, we provide examples and counterexamples of dynamic coherent ac-

ceptability indices, and their applications in portfolio management.
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CHAPTER 1

INTRODUCTION

In this introductory chapter we provide the motivation for our research. We

were inspired by some problems pertaining to financial risk management, where one

needs to assess potential rewards vis-a-vis potential losses associated with any finan-

cial investment process, or financial portfolio management process.

A financial portfolio is a collection of investment assets held by professional

institutions or individuals. The assets in the portfolio may include money market

accounts, stocks, bonds, forwards, futures, options, swaps and other synthetic or

hybrid financial products. In modern finance, a portfolio is becoming more and more

complex, consisting of various classes of assets, and the complexity requires advanced

mathematical tools to manage it successfully.

Any financial portfolio gives rise to various cash flows that are typically dis-

tributed in time. Such cash flows will be referred to as cash flow stream. In general,

there are two important concepts concerned with a cash flow stream: “return” and

“risk”.

Portfolio managers are responsible for selecting investment assets for their

portfolios. The composition of a portfolio typically changes in time. It is important

to assess quality of a portfolio mix as time progresses not only ex–post, but also

ex–ante. Our research will contribute to handle this problem by providing precise

mathematical measures to differentiate or rank various portfolios.

Traditionally, in the area of optimal portfolio selection, utility functions are

used to discriminate between portfolios, or, in other words, to assess quality of the

portfolio vis-a-vis the chosen utility funtion. Utility functions however suffer from

certain disadvantages, that make their use of limited value, given one wants to as-
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sess performance of a portfolio looking at portfolio’s return versus portfolio’s risk. In

particular, it does not seem to be possible to interpret classical measures of financial

performance, such as Sharpe ratio or Gain-to-Loss ratio, in terms of utility functions.

The study presented in this thesis, is in fact meant to begin mathematical investiga-

tion of abstract form of classical financial measures of performance in the context of

dynamic investment processes.

Return on investment (ROI), relative to a given portfolio, is a measure of how

profitable a cash flow stream is. One classical ROI is simple return, which is defined

as the relative change in the value of a portfolio over a specified time horizon. For a

comprehensive discussion of classical ROIs we refer to [26].

Typical ROIs do not account for the riskiness of the portfolio. Consequently, an

investment manager does not assess the quality of her/his investment strategy solely

based on analysis of a ROI. An appropriate measure of riskiness of the portfolio, or

of portfolio risk, needs to be accounted for as well.

Developing good and useful measures of portfolio risk has become an impor-

tant research activity over the past several years, both in academia and in financial

industry (cf. [17, 23, 27, 36, 10, 48]). Advanced mathematical tools are usually needed

to handle the complex distribution of the cash flow stream, and hence to measure the

risk. An overview of the mathematics of (static) risk measures will be given in chapter

2.

Generally speaking, higher return implies higher risk. The risk tolerance for a

portfolio is usually limited. Hence, portfolio managers are typically concerned with

finding satisfactory balance between return and risk associated with an investment

process when making decisions. Various measures have been developed to quantify

this balance. Such measures are typically referred to as performance measures or
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measures of performance (MOP).

A classical MOP, widely used in the financial industry, is the Sharpe Ratio

(SR) introduced by Sharpe in [46]. It is defined as SR :=
E[R−Rf ]

σ
if E[R − Rf ] > 0

and 0 otherwise, where R is the portfolio return, Rf is the risk-free rate, E[R − Rf ]

is the expected value of the excess return R−Rf , and σ is the standard deviation of

the excess return.

SR is expressed as a ratio of expected excess return to standard deviation,

and thus in financial applications it measures expected excess return of a portfolio in

units of portfolio’s standard deviation. SR is therefore used to characterize how well

the return of an asset compensates the investor for the risk taken, and as a classical

tool to rank portfolios. The higher the SR is, the better the portfolio performs.

However, SR has some well-documented weaknesses. The major drawback of

SR is that it uses standard deviation to quantify risk. The reason of course is that

positive returns also contribute to this measure of risk. To eliminate this unwanted

feature, other ratio-types MOPs were proposed after SR, such as Sortino Ratio (SOR)

(cf. [47]), Gain Loss Ratio (GLR) (cf. [5]) and Risk Adjusted Return on Capital

(RAROC) (cf. [34]):

Definition 1.0.1. Sortino Ratio is defined as follows:

SOR(X) :=


E[X]√

E[(X−)2]
, if E[X] > 0 ,

0, otherwise ,

where X denotes the portfolio excess return R − Rf and X− = max{−X, 0}. By

convention, SOR(0) = +∞, where 0 stands for no cash flows.
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Definition 1.0.2. Gain Loss Ratio is defined as the ratio of the mean excess return

to the expectation of the negative excess return:

GLR(X) :=


E[X]

E[X−]
, if E[X] > 0 ,

0, otherwise ,

where X denotes the portfolio excess return R − Rf and X− = max{−X, 0}. By

convention, GLR(0) = +∞, where 0 stands for no cash flows.

Definition 1.0.3. Risk-Adjusted Return on Capital is defined as the ratio of the mean

excess return to some selected risk measure ρ:

RAROC(X) :=


E[X]
ρ[X]

, if E[X] > 0 ,

0, otherwise ,

where X denotes the portfolio excess return R − Rf . By convention, RAROC(X) =

+∞ if ρ(X) ≤ 0.

We note that the above MOPs focus on downside risk, which makes them more

attractive as compared with the Sharpe ratio.

All the MOPs mentioned above share some common desirable features: they

are unit-less, they are increasing functions of return and decreasing functions of risk;

moreover, according to these MOPs diversification of a portfolio improves its perfor-

mance1. This observation inspires a natural study of MOPs in a unified mathematical

framework.

Recently, Cherny and Madan [14] originated an effort to provide a mathemat-

ical framework to study these measures in a unified way. The study of [14] was done

in static, one-time period setup. Cherny and Madan coined the term Acceptability

1See Proposition 2.1.1 for a strict formulation
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Index (AI) as a mathematical terminology for MOPs. Our research goal is to ele-

vate the mathematical framework for studying AIs to dynamical, multi-period setup,

where cash flows are considered as random processes, and one needs to assess their

acceptability consistently in time. In particular, we are concerned not just with the

total cumulative terminal value of the cash flow stream as seen from the initial time

of the investment process, but also with all remaining cumulative cash flows between

each intermediate time and the terminal time of the investment process.

As a parallel research, we also contributed to the extension of static risk mea-

sures to dynamic setup. It will be seen that there is a strong duality relationship

between acceptability indices and risk measures in both static and dynamic frame-

works. It should be also mentioned that the theory we developed here covers dynamic

versions of some classical MOPs, and it is not just a theory in itself.

The rest of the thesis is organized as follows: A survey of framework for

studying static coherent acceptability indices (SCAIs) will be presented in Chapter

2 following Cherny and Madan [14]. In Chapter 2 we shall also provide a brief sur-

vey of these aspects of the theory of static coherent risk measures (SCRMs) that

are relevant for this thesis. Next, in Chapter 3, we shall extend the static theory of

Chapter 2 to dynamic framework; in particular, we shall present the duality between

dynamic coherent acceptability indices (DCAIs) and dynamic coherent risk measures

(DCRMs). The major result, a representation theorem for DCAIs in terms of dynam-

ically consistent sequence of sets of probability measures, will be derived in Chapter

4. Another important result – the representation theorem for DCRMs – will also

be presented in Chapter 4. In Chapter 5 we introduce an alternative way to de-

fine dynamic coherent acceptability indices; indices derived in this way are termed

alternative dynamic coherent acceptability indices (ADCAIs), and we provide the

corresponding representation theorem. The study done in this chapter is based on
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theory of DCRMs developed by Riedel in [42]. Finally, in Chapter 6, we discuss some

examples of DCAIs, and their applications. In particular, we show that dGLR, which

will be defined in Chapter 6, is a DCAI but is not an ADCAI.

The results of Chapter 3 and Chapter 4 are to be published in a paper (cf.

[6]) that is in revision for Mathematical Finance.
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CHAPTER 2

STATIC THEORY: COHERENT ACCEPTABILITY INDICES AND RISK
MEASURES

In this chapter, we review the theory of static coherent acceptability indices

(SCAIs), developed in [14], and we review the theory of static coherent risk measures

(SCRMs) originated in [3].

2.1 SCAIs and SCRMs

We assume a finite probability space (Ω,F , P). As a matter of fact, for risk

measure theory, many results can be extended to an arbitrary probability space, but

the proofs become very technical. For acceptability index theory, we work within

finite probability space. The extension to general probability space is part of future

work.

We denote by G the space of all bounded random variables on (Ω,F , P). The

random variable X ∈ G can be regarded as the total cumulative terminal value of

a cash flow stream. We denote by P the set of all probability measures absolutely

continuous to the reference probability measure P. In addition, throughout this thesis,

R denotes the set of all real numbers and N denotes the set of all natural numbers

without number 0.

2.1.1 Definition. A risk measure is a function ρ : G → R, whereas an acceptability

index is a function α : G → [0, +∞]. Risk measure is used to determine the amount of

possible loss at the end of investment period. Hence, it is in dollar unit and should be

valued in R. However, acceptability index is understood as the degree of acceptability

of a cash flow; in a sense, it represents a measure of efficiency of the cash flow. A

larger index indicates better performance, with α(X) = +∞ for X being an ‘arbitrage

opportunity’ and α(X) = 0 for X being a ‘surely loss’ portfolio. Acceptability index
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is therefore an ordinal and unitless concept, which can be valued on the extended

positive half of the real line [0, +∞].

Acceptability index and risk measure as such are too broad concepts, and

they may not fulfill certain practically desirable properties. That is why researchers

focused their attention on more specific concepts of the coherent acceptability index

and coherent risk measure.

Definition 2.1.1. A function α : G → [0, +∞] is called static coherent acceptability

index if the following properties are satisfied:

(S1) Monotonicity. If X ≤ Y , then α(X) ≤ α(Y );

(S2) Scale invariance. For every X ∈ G and λ > 0, α(λX) = α(X);

(S3) Quasi-concavity. If α(X) ≥ x, α(Y ) ≥ x for some x ∈ (0, +∞], then

α(λX + (1 − λ)Y ) ≥ x for all λ ∈ [0, 1];

(S4) Fatou Property. If |Xn| ≤ 1, α(Xn) ≥ x for all n ≥ 1, and Xn → X, as

n → ∞, in probability, then α(X) ≥ x.

The above properties have natural financial interpretation. For example, (S1)

states that if Y dominates X at every state ω ∈ Ω, then Y is acceptable at least at

the same level as X is; (S2) implies that cash flows with the same direction of trade

have the same level of acceptance. Quasi-concavity (S3) implies that a diversified

portfolio improves the performance of its components; to see this, it is enough to

take x = min{α(X), α(Y )}. Fatou Property (S4) is a technical continuity property,

which is used for constructing the duality between coherent acceptability indices and

coherent risk measures.

Proposition 2.1.1. SR, SOR, GLR and RAROC all satisfy (S3)-quasi-concavity.
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Proof. We only show that SR and SOR are quasi-concave. GLR and RAROC have

been verified to be quasi-concave in [14]. For convenience, denote by X and Y excess

returns for two arbitrary portfolios.

First, we show that SR is quasi-concave. If SR(X) ≥ x and SR(Y ) ≥ x for

some x > 0, by the definition of SR, we can see that E[X] > 0, E[Y ] > 0, and

SR(X) =
E[X]

σ(X)
≥ x , SR(Y ) =

E[Y ]

σ(Y )
≥ x .

If σ(X) = 0 or σ(Y ) = 0, then X or Y will be a positive constant. In this case,

by the properties of standard deviation, we can verify that SR(λX + (1 − λ)Y ) =

E[λX+(1−λ)Y ]
σ(λX+(1−λ)Y )

≥ x for all λ ∈ [0, 1].

If both σ(X) > 0 and σ(Y ) > 0, then for all λ ∈ [0, 1],

E
[
λX + (1 − λ)Y

]
= λE[X] + (1 − λ)E[Y ] ≥ xλσ(X) + x(1 − λ)σ(Y ) . (2.1)

Let ρ be the correlation between X and Y , then −1 ≤ ρ ≤ 1 and

σ2(λX + (1 − λ)Y ) = σ2(λX) + σ2
(
(1 − λ)Y

)
+ 2ρσ(λX)σ

(
(1 − λ)Y

)
≤ σ2(λX) + σ2

(
(1 − λ)Y

)
+ 2σ(λX)σ

(
(1 − λ)Y

)
=

(
σ(λX) + σ

(
(1 − λ)Y

))2

,

which implies that σ
(
λX +(1−λ)Y

)
≤ σ(λX)+σ

(
(1−λ)Y

)
= λσ(X)+(1−λ)σ(Y ).

Then, (2.1) gives

E
[
λX + (1 − λ)Y

]
≥ xσ(λX + (1 − λ)Y ) .

In addition, we have E[λX + (1−λ)Y ] = λE[X] + (1−λ)E[Y ] > 0. By the definition

of SR,

SR
(
λX + (1 − λ)Y

)
=

E
[
λX + (1 − λ)Y

]
σ
(
λX + (1 − λ)Y

) ≥ x .

This concludes the proof that SR is quasi-concave.
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By Cauchy-Schwarz inequality, we have

E[X−Y −] ≤
√

E[(X−)2]E[(Y −)2] .

Then, by the similar way for SR, SOR can be proved quasi-concave with the following

fact:

(
λ
√

E[(X−)2] + (1 − λ)
√

E[(Y −)2]
)2

=λ2E[(X−)2] + (1 − λ)2E[(Y −)2] + 2λ(1 − λ)
√

E[(X−)2]E[(Y −)2]

≥λ2E[(X−)2] + (1 − λ)2E[(Y −)2] + 2λ(1 − λ)E[X−Y −]

=E
[(

λX− + (1 − λ)Y −
)2]

≥ E
[(

(λX + (1 − λ)Y )−
)2]

.

Now we shall introduce the definition of static coherent risk measures origi-

nated in [3].

Definition 2.1.2. A function ρ : G → R is called static coherent risk measure if the

following properties are satisfied:

(R1) Monotonicity. If X ≤ Y , then ρ(X) ≥ ρ(Y );

(R2) Positive homogeneity. For every X ∈ G and λ ≥ 0, ρ(λX) = λρ(X);

(R3) Translation property. For every X ∈ G and c ∈ R, ρ(X + c) = ρ(X) − c;

(R4) Subadditivity. For every X ∈ G and Y ∈ G, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Monotonicity (R1) implies that higher cash flow stream Y should have lower

risk. Positive homogeneity (R2) indicates that scaling a portfolio will also scale its

risk. (R3) means that if an investor adds or subtracts a deterministic amount of

cash into the portfolio, the risk will be reduced or increased by the same amount.
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Subadditivity (R4) is the diversification property, which agrees with the well-known

investment principle that a diversified portfolio has lower risk. Note that, (R2) and

(R3) together imply that a portfolio with a deterministic future cash flow c ∈ R has

risk −c.

The theory of static risk measures has been explored and extended by many

researchers; to mention just a few of them: Fölmer and Schied [29, 30] generalized the

concept of SCRMs to static convex; law-invariant risk measures have been investigated

by Kusuoka [39]; for a systematic discussion on static risk measures we refer reader

to the monographs by Delbaen [20] and Fölmer and Schied [31].

Many researchers have also contributed to the extension of risk measure theory

to dynamic framework, see for instance [4, 9, 11, 12, 13, 18, 32, 33, 37, 42, 44, 50].

Our first research result, which is named alternative dynamic coherent acceptability

indices (ADCAIs), is established on the DCRMs theory by Riedel in [42]. Riedel’s

theory will be shown in Appendix A, and ADCAIs will be presented in Chapter 5.

Now we show the duality between SCRMs and SCAIs. This is one of the main

contribution by Cherny and Madan in [14].

Theorem 2.1.1. An unbounded above function α : G → [0, +∞] is a SCAI if and only

if there exists an increasing family of SCRMs (ρx)x∈(0,+∞), such that ρx(X) ≤ ρy(X)

for all X ∈ G with x ≤ y, and

α(X) = sup {x ∈ (0, +∞) : ρx(X) ≤ 0} , (2.2)

where inf ∅ = ∞ and sup ∅ = 0.

This theorem indicates that every SCAI can be characterized in terms of an

increasing family of SCRMs (ρx)x∈(0,+∞), and vice versa.

2.1.2 Examples. We will introduce some examples of static risk measures. A
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traditional and popular risk measure being used in financial industry is Value at Risk

(VaR) (cf. [24, 35]), defined as VaRα(X) := inf{c ∈ R | P[X + c < 0] ≤ α} for

α ∈ (0, 1). It can be verified that VaR does not satisfy subadditivity (R4), and

therefore is not a SCRM.

Based on VaR, researchers proposed Tail Value at Risk (TVaR) (cf. [2]),

defined as TVaRα(X) := − infQ∈Qα EQ[X] , for a given α ∈ (0, 1], where Qα is the set

of probability measures absolutely continuous with respect to P such that dQ/dP ≤

α−1.

It is well-known that TVaR is a SCRM. Intuitively, VaR differs from TVaR

that it only indicates in what probability the loss will exceed a certain amount without

knowing how bad it is, whereas TVaR measures how bad the loss will be.

Next, we discuss several examples of static coherent acceptability indices.

First, note that Sharpe Ratio does not satisfy the monotonicity (S1), and hence

it is not a static coherent acceptability index. Gain Loss Ratio, however, is verified to

be a SCAI by Cherny and Madan in [14]. They also showed that RAROC is a static

coherent acceptability index, if coherent risk measure is selected to define RAROC.

The Duality Theorem 2.1.1 provides another way to construct examples for

static coherent acceptability indices. For example, since TVaR is a static coherent

risk measure, we define AIT as AIT(X) := sup{x ∈ (0, +∞), TVaR 1
1+x

(X) ≤ 0}. By

the Theorem 2.1.1, it is a static coherent acceptability index. More examples such as

AIW, AIMIN, AIMAX, AIMINMAX, AIMAXMIN etc, have been also presented in

[14].

2.2 Set of Probability Measures and Representation Theorems

In this section, we shall discuss how to represent both static coherent risk

measure and static coherent acceptability index in terms of set of probability mea-
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sures. Mathematically, it provides abstract and uniform formulas to study SCRMs

and SCAIs; practically, it also endows them with a straightforward financial meaning

by regarding each probability measure as a market scenario or condition.

The Standard Portfolio Analysis of Risk (SPAN) system is a popular measure

for assessing portfolio risk. It was developed and implemented by Chicago Mercantile

Exchange (CME) in 1988. Since then, it has become the industry standard and has

been adopted by most options and futures exchanges over the world.

SPAN evaluates overall portfolio risk by calculating the worst possible loss that

a portfolio may have, given sixteen different scenarios or market conditions. Artzner

et al in [3] provides a detailed example regarding the SPAN computation, and shows

that the calculation can be viewed as producing the maximum of the expected loss

under each of sixteen probability measures.

This methodology, however, allows users to extend to any number of scenarios

to meet their particular needs. In the mathematical model, a collection of scenarios

is understood as a set of probability measures. Therefore, we can extend SPAN to

define a risk measure given any specific set of probability measures (scenarios).

Definition 2.2.1. Given any non-empty set of probability measures (scenarios) Q,

define ρQ as follows

ρQ(X) := − inf{EQ[X] : Q ∈ Q} .

It can be shown that ρQ is a SCRM. It is called risk measure with respect to the set

Q of probability measures.

The risk defined above has a straightforward financial meaning, which claims

that given a set of probability measures (market scenarios), the risk is simply the

negative value of minimum expectation under the specified set. It is actually the worst



14

condition a portfolio manager can expect under a certain set of scenarios regarding

market change.

One of the greatest results in modeling risk measure theory is that any coherent

risk measure can be represented by a set of probability measures (scenarios), which

leads to the following representation theorem in [3]:

Theorem 2.2.1. A function ρ : G → R is a coherent risk measure if and only if

ρ(X) = − inf{EQ[X] : Q ∈ Q} , (2.3)

for a certain set Q of probability measures absolutely continuous with respect to P.

The above representation theorem is established in [3] for finite Ω, and gener-

alized to a general probability space in [21].

It is worth to mention that representation theorem does not imply a one-to-

one map. That is, there may exist two different sets of probability measures, which

give rise to the same coherent risk measure by (2.3). As a matter of fact, it can be

verified that any set of probability measures and its closed convex hull generate the

same coherent risk measure.

Definition 2.2.2. In a real vector space V , for any subset X ⊂ V , the convex hull

XC of X is defined as follows:

XC :=
{ n∑

i=1

λixi

∣∣ xi ∈ X, λi ∈ R, λ > 0,
n∑

i=1

λi = 1
}

,

where n can be an arbitrary natural number.

Proposition 2.2.1. Let Q be a subset of P. Denote the closed convex hull of Q by

Q̄C. We have

inf
Q∈Q

EQ[X] = inf
Q∈Q̄C

EQ[X] ,

for all X ∈ G. Hence, Q and Q̄C generate the same coherent risk measure defined by

(2.3).
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Proof. We observe that Q is a subset of its closed convex hull Q̄C , and thus

inf
Q∈Q

EQ[X] ≥ inf
Q∈Q̄C

EQ[X] .

The converse inequality will be verified in two steps. First, we consider QC

the convex hull of Q. For any Q0 ∈ QC , by the Definition 2.2.2, there exists

Q1, Q2, · · · , Qn such that Q0 =
∑n

i=1 λiQi with λi > 0, and
∑n

i=1 λi = 1. Hence,

by the linearity of expectation,

EQ0 [X] =
n∑

i=1

(
λiEQi

[X]
)

≥
n∑

i=1

(
λi inf

Q∈Q
EQ[X]

)
= inf

Q∈Q
EQ[X]

n∑
i=1

λi = inf
Q∈Q

EQ[X] ,

for any X ∈ G. Then, by Lemma B.0.1, we conclude that

inf
Q∈QC

EQ[X] ≥ inf
Q∈Q

EQ[X] . (2.4)

Next step, note that Q̄C is the closure of QC , then for any Q0 ∈ Q̄C , there

exists a sequence (Q1, Q2, · · · ) with each Qn ∈ QC such that

lim
n→∞

Qn = Q0 .

Since we are in finite probability space, the above limit is state-wise. By the linearity

of expectation and finiteness of the probability space,

lim
n→∞

EQn [X] = EQ0 [X] ,

for all X ∈ G. Then, EQ0 [X] ≥ inf
Q∈QC

EQ[X]. By Lemma B.0.1,

inf
Q∈Q̄C

EQ[X] ≥ inf
Q∈QC

EQ[X] .
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Together with (2.4), we get

inf
Q∈Q̄C

EQ[X] ≥ inf
Q∈Q

EQ[X] .

Finally, we conclude that, for any X ∈ G,

inf
Q∈Q̄C

EQ[X] = inf
Q∈Q

EQ[X] .

By the Definition 2.2.1, Q and Q̄C must generate the same coherent risk

measure.

We will extend this proposition to dynamic framework in Chapter 4, which

is essential to verify the representation theorem for dynamic coherent acceptability

indices.

We conclude this chapter by presenting the representation theorem for SCAIs

(cf [14]). This is a direct result of Duality Theorem 2.1.1 and Representation Theorem

2.2.1 for SCRMs.

Theorem 2.2.2. An unbounded above function α : G → [0, +∞] is a SCAI if and

only if there exists an increasing family (Dx)x∈(0,+∞] of sets of probability measures,

such that Dx ⊂ Dy for x ≤ y, and α admits the following representation

α(X) = sup

{
x ∈ (0, +∞) : inf

Q∈Dx

EQ[X] ≥ 0

}
, (2.5)

where inf ∅ = ∞ and sup ∅ = 0.

The representation theorem indicates that any SCAI can be characterized by

an increasing family of sets of probability measures. On the other hand, given any

increasing family of sets of probability measures, we can define a SCAI through (2.5).
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CHAPTER 3

DYNAMIC COHERENT ACCEPTABILITY INDICES AND DYNAMIC
COHERENT RISK MEASURES

In this chapter, we introduce the theory of dynamic coherent acceptability

indices (DCAIs). We start with presenting the mathematical framework, and then

proceed to the properties used to define DCAIs. As a parallel research, we also study

dynamic coherent risk measures (DCRMs), as well as the duality between DCAIs and

DCRMs.

3.1 Mathematical Preliminaries

Typically, in dynamic framework, new market information is updated as time

moves forward. The new information may include underlying assets price movement,

new economic policies or political events etc. The dynamic acceptability indices

should be able to assess performance of the cash flow stream accounting for the

newly acquired information.

Note that one may attempt to use a sequence of static (one-period) acceptabil-

ity indices. However, by doing this one may end up with a sequence of measurements

that are not consistent in time and contradict the updated information, in the sense

to be explained below (cf. Property D7). The motivation for developing a theory of

DCAIs was to provide performance measurements consistently in time and compatible

with the information process.

To avoid technical problems, we consider a finite probability space (Ω,F , P)

and finite time horizon T = {0, 1, 2, . . . , T}. The finiteness of probability and time

space is a good starting point to carry out research on DCAIs. Analogous to static

theory, the proofs will become very technical if we extend to an arbitrary probability

space and continuous time.
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We assume that the reference probability measure P is of full support. In the

finite probability space, this assumption is used to eliminate the irrelevant states.

Throughout the rest of the thesis, we adopt the usual2 convention that inf ∅ = ∞ and

sup ∅ = 0.

To facilitate the proofs in later sections, we introduce the concept of partition

and give some basic results of partition in finite probability space.

Definition 3.1.1. A partition of a probability space Ω is a collection of exhaustive

and mutually exclusive subsets,

{P1, . . . , Pn}, such that Pi ∩ Pj = ∅,∀ i ̸= j and ∪n
k=1 Pk = Ω .

In a finite probability space, the algebra of events generated by the partition is

the collection of all unions of Pj’s. These sets (Pi)i=1,...,n are the fundamental building

blocks for the algebra. In fact, it has been shown in [38] that in finite probability

space Ω, any algebra is generated by a unique partition of Ω.

Definition 3.1.2. Algebra F1 is said to be included in algebra F2 if F1 ⊂ F2.

If F1 is included in F2, the partition that generates F2 has finer sets than the

ones that generate F1.

In dynamic framework, we endow the underlying probability space Ω with the

sequence of algebras, called filtration which models the flow of information.

Definition 3.1.3. A filtration F is the collection of algebras,

F = {F0,F1, . . . ,Ft, . . . ,FT} with Ft ⊂ Ft+1, F0 = {∅, Ω}, and FT = F .

As time passes, an observer knows more and more detailed information, that

is, finer and finer partitions of Ω, as illustrated in the following corollary that will be

2Same as the convention in Theorem 2.2.2
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applied in the later proofs.

Proposition 3.1.1. For Ft ∈ F, there exists a unique partition of Ω, say {P t
1, P

t
2, . . . , P

t
nt
},

that generates Ft. And for each P t
i , i = 1, . . . , nt, there exists {P t+1

i,1 , P t+1
i,2 , . . . , P t+1

i,ji
},

which is a subset of the partition that uniquely generates Ft+1, such that P t
i =

P t+1
i,1 ∪ P t+1

i,2 · · · ∪ P t+1
i,ji

, where ji ∈ N.

Denote by Υt := {P t
1, P

t
2, . . . , P

t
nt
} the unique partition of Ω at time t that

generates Ft. Thus, the number of the elements in Υt is nt. A cash flow stream is

modeled as a stochastic process instead of random variable. We denote such processes

by D = {Dt(ω)}T
t=0, which are adapted to the filtration F. We also denote by D the

set of all bounded stochastic processes. In addition, c will denote a generic constant,

and m will denote a generic random variable. Let X still be a bounded random

variable and G be the space of all bounded random variables on (Ω,F , P). Finally,

a standing (financial type) assumption, which we make without loss of generality, is

that the interest rates are zero.

3.2 Definition and Properties of DCAIs

Analogous to static theory for SCAIs, we define DCAIs through a set of prop-

erties.

Definition 3.2.1. A dynamic coherent acceptability index is a function

α : T × D × Ω → [0, +∞] that satisfies the following set of properties:

(D1) Adaptiveness. For any t ∈ T and D ∈ D, αt(D) is Ft-measurable;

(D2) Independence of the past. For any t ∈ T and D, D′ ∈ D, if there exists

A ∈ Ft such that 1ADs = 1AD′
s for all s ≥ t, then 1Aαt(D) = 1Aαt(D

′);

(D3) Monotonicity. For any t ∈ T and D,D′ ∈ D, if Ds(ω) ≥ D′
s(ω) for all s ≥ t

and ω ∈ Ω, then αt(D, ω) ≥ αt(D
′, ω) for all ω ∈ Ω;
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(D4) Scale invariance. αt(λD, ω) = αt(D, ω) for all λ > 0, D ∈ D, t ∈ T , and

ω ∈ Ω;

(D5) Quasi-concavity. If αt(D, ω) ≥ x and αt(D
′, ω) ≥ x for some t ∈ T , ω ∈ Ω,

D, D′ ∈ D, and x ∈ (0, +∞], then αt(λD + (1 − λ)D′, ω) ≥ x for all λ ∈ [0, 1];

(D6) Translation invariance. αt(D+m1{t}, ω) = αt(D+m1{s}, ω) for every t ∈ T ,

D ∈ D, ω ∈ Ω, s ≥ t and every Ft-measurable random variable m;

(D7) Dynamic consistency. For any t ∈ {0, 1, . . . , T − 1} and D,D′ ∈ D, if

Dt(ω) ≥ 0 ≥ D′
t(ω) for all ω ∈ Ω, and there exists a non-negative Ft-measurable

random variable m such that αt+1(D, ω) ≥ m(ω) ≥ αt+1(D
′, ω) for all ω ∈ Ω,

then αt(D, ω) ≥ m(ω) ≥ αt(D
′, ω) for all ω ∈ Ω.

Property (D1) is a natural property in a dynamic setup and it assumes that a

DCAI is adapted to the same information flow {Ft}T
t=0 as is any cash flow D ∈ D.

Property (D2) postulates that in the dynamic context the current measurement

of performance of a cash flow D only accounts for future payoffs. To decide, at any

given point of time, whether one should hold on to a position generating the cash

flow D, one may want to compare the measurement of the performance of the future

payoffs (provided by DCAI at this point of time) to already known past payoffs.

Properties (D3)-(D5) are naturally inherited from the static case (cf. Defini-

tion 2.1.1). Translation invariance (D6) implies that if a known dividend m is added

to D at time t (today), or at any future time s ≥ t, then all such adjusted cash flows

are accepted today at the same level.

Dynamic consistency (D7) is the key property in the dynamic setup which

relates the values of the index between two consecutive days in a consistent manner.

It can be interpreted from financial point of view as follows: if a portfolio has a
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nonnegative cashflow today, then we accept this portfolio today at least at the same

level as we would accept it tomorrow; similarly, if today’s cashflow is nonpositive the

acceptance level today can not be larger than the level of acceptance tomorrow.

3.2.1 Normality of DCAIs. For both technical and practical purposes, we

introduce another property for DCAIs: normalization. We start from an intuitive

example to illustrate its importance.

Example 3.2.1. Given a non-negative constant c on the extended positive half of the

real line [0, +∞], define a function α : T × D × Ω → [0, +∞] as follows:

αt(D, ω) := c ,

for all t ∈ T , D ∈ D and ω ∈ Ω. The function α is a constant function. It can be

verified that α is a dynamic coherent acceptability index.

However, from practical point of view, α from Example 3.2.1 is not a good

candidate for portfolio performance measurement since it gives a constant value for

all portfolios and thus can not be used as a ranking tool. This example shows the

necessity to normalize DCAIs by requiring that an AI reaches the boundaries 0 and

+∞, which in a sense allows to differentiate portfolios.

Definition 3.2.2. A dynamic coherent acceptability index α is called normalized if

for all t ∈ T and ω ∈ Ω, there exist two portfolios D, D′ ∈ D such that

αt(D,ω) = +∞ and αt(D
′, ω) = 0 .

Note that normalization will exclude the degenerate examples of acceptability

indices such as a constant index over all states, times, and portfolios (Example 3.2.1).

Also, it is reasonable to have that “an arbitrage portfolio” is acceptable at

highest level, whereas a sure loss portfolio should be acceptable at lowest level. It can
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be shown that a normalized index reaches +∞ for every strictly positive cash flow

and 0 if the cash flow is strictly negative:

Proposition 3.2.1. If a dynamic coherent acceptability index α is normalized, then

we have,

αt(D
c,s) = +∞ for c > 0, and αt(D

c,s) = 0 for c < 0, for all t ∈ T ,

where, for any ω ∈ Ω and s ≥ t, Dc,s(r, ω) = c for r = s and zero otherwise.

Proof. First, we show that αt(D
c,s) = +∞ for c > 0 and s ≥ t. If not, there exist

c̄ > 0, t̄ ∈ T , s̄ ≥ t̄ and ω̄ ∈ Ω such that αt̄(D
c̄,s̄, ω̄) < +∞. By (D6) – translation

invariance of α,

αt̄(D
c̄,t̄, ω̄) = αt̄(D

c̄,s̄, ω̄) < +∞ .

For any positive constant c+ > 0, we have c+
c̄

> 0. Hence, by (D4) – scale invariance

of α,

αt̄(D
c+,t̄, ω̄) = αt̄(

c+

c̄
Dc̄,t̄, ω̄) = αt̄(D

c̄,t̄, ω̄) < +∞ . (3.1)

Since α is normalized, there exists D̄ ∈ D such that αt̄(D̄, ω̄) = +∞. Since D̄ is a

bounded process, there exists a positive finite constant c0 such that for all t ∈ T and

ω ∈ Ω,

D̄t(ω) ≤ c0 .

Define a new process Dnew = c01{t̄,t̄+1,...,T}, we get D̄s(ω) ≤ Dnew
s (ω) for all s ≥ t̄ and

ω ∈ Ω. By (D3) – monotonicity of α,

αt̄(D̄, ω̄) ≤ αt̄(D
new, ω̄) ,

for ω ∈ Ω. Then, (D6), (D4) and (3.1) together imply

αt̄(D
new, ω̄) = αt̄((T − t + 1)Dc0,t̄, ω̄) = αt̄(D

c0,t̄, ω̄) < +∞ ,
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which indicates αt̄(D̄, ω̄) < +∞. It contradicts the fact αt̄(D̄, ω̄) = +∞. Hence, for

all c > 0, t ∈ T , s ≥ t and ω ∈ Ω,

αt(D
c,s, ω) = +∞ .

Next, we show that αt(D
c,s) = 0 for c < 0 and s ≥ t. If not, there exists a

c̄ < 0, t̄ ∈ T , s̄ ≥ t̄ and ω̄ ∈ Ω such that

αt̄(D
c̄,s̄, ω̄) > 0 .

By (D6) – translation invariance of α, αt̄(D
c̄,t̄, ω̄) = αt̄(D

c̄,s̄, ω̄) > 0. For any negative

constant c− < 0, we have c−
c̄

> 0. Hence, by (D4) – scale invariance of α,

αt̄(D
c−,t̄, ω̄) = αt̄(

c−
c̄

Dc̄,t̄, ω̄) = αt̄(D
c̄,t̄, ω̄) > 0 . (3.2)

Since α is normalized, there exists D̄ ∈ D such that αt̄(D̄, ω̄) = 0. Since D̄ is a

bounded process, there exists a negative finite constant c0 such that for all t ∈ T and

ω ∈ Ω,

D̄t(ω) > c0 .

Define a new process Dnew = c01{t̄,t̄+1,...,T}, we get D̄s(ω) ≥ Dnew
s (ω) for all s ≥ t̄ and

ω ∈ Ω. Then, by (D3) – monotonicity of α,

αt̄(D̄, ω̄) ≥ αt̄(D
new, ω̄) ,

for ω ∈ Ω. Then, (D6), (D4) and (3.2) together imply

αt̄(D
new, ω̄) = αt̄((T − t + 1)Dc0,t̄, ω̄) = αt̄(D

c0,t̄, ω̄) > 0 ,

which indicates αt̄(D̄, ω̄) > 0. It contradicts the fact αt̄(D̄, ω̄) = 0. Hence, for all

c < 0, t ∈ T , s ≥ t and ω ∈ Ω,

αt(D
c,s, ω) = 0 .
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Since we are working with a bounded stochastic processes, when adding (with-

drawing) enough large cash to (from) a specific portfolio, the performance level will

reach infinity (zero) index level. The following corollary shows this fact.

Corollary 3.2.1. If a dynamic coherent acceptability index α is normalized, then for

any given D ∈ D and t ∈ T , there exist two finite constants cu and cl such that,

αt(D + cu1{t}, ω) = +∞ and αt(D + cl1{t}, ω) = 0 ,

for all ω ∈ Ω.

Proof. Given any D ∈ D and t ∈ T , since D is a bounded process, there exists a

finite positive number cmax such that

|Ds(ω)| + 1 ≤ cmax , (3.3)

for all s ≥ t and ω ∈ Ω. Let us define cu := (T − t+1)cmax and cl := −(T − t+1)cmax.

Then, by (D6) – translation invariance of α,

αt(D + cu1{t}, ω) = αt(D + (T − t + 1)cmax1{t}, ω)

= αt(D +
T∑

s=t

cmax1{s}, ω) .

Note that for each s ∈ {t, t + 1, . . . , T}, (3.3) gives Ds + cmax1{s} ≥ 1. By (D3) –

monotonicity of α,

αt(D + cu1{t}, ω) ≥ αt(1{t}, ω) , (3.4)

for all ω ∈ Ω. Since α is normalized, by Proposition 3.2.1,

αt(1{t}, ω) = +∞ .

Hence, together with (3.4), we get

αt(D + cu1{t}, ω) = +∞ .
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By (D6) – translation invariance of α,

αt(D + cl1{t}, ω) = αt(D − (T − t + 1)cmax1{t}, ω)

= αt(D −
T∑

s=t

cmax1{s}, ω) .

Note that for each s ∈ {t, t + 1, . . . , T}, (3.3) implies that Ds − cmax1{s} ≤ −1. By

(D3) – monotonicity of α,

αt(D + cl1{t}, ω) ≤ αt(−1{t}, ω) , (3.5)

for all ω ∈ Ω. Since α is normalized, by Proposition 3.2.1,

αt(−1{t}, ω) = 0 .

Hence, together with (3.5), we have

αt(D + cl1{t}, ω) = 0 .

Next, we will introduce a desired technical property for dynamic setting.

Definition 3.2.3. A dynamic acceptability index α is called right-continuous if

lim
c→0+

αt(D + c1{t}, ω) = αt(D,ω), for all t ∈ T , D ∈ D, and ω ∈ Ω.

It should be noted that Proposition 3.2.1 does not imply the value of αt(0).

In [14], (S4) – Fatou Property would conclude that an unbounded above SCAI has

the property α(0) = +∞. Fatou Property is a continuous-type property for SCAIs.

Similar to the Fatou Property, the right-continuous property for DCAIs gives

rise to αt(0) = +∞.

Proposition 3.2.2. If α is a normalized and right-continuous dynamic coherent ac-

ceptability index, then αt(0) = +∞ for all t ∈ T .
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Proof. If α is normalized, by Proposition 3.2.1,

αt(c1t) = +∞ ,

for any positive c > 0 and t ∈ T . Then, since α is right-continuous,

αt(0) = lim
c→0+

αt(c1{t}) = +∞ .

3.2.2 Dynamic Consistency of DCAIs. Dynamic consistency property plays

a central role in the dynamic theory of both acceptability indices and risk measures.

Generally speaking, a simple generalization of a static measurement into multiple

periods framework, may not satisfy dynamic consistency. Such an example will be

presented in the Chapter 6.

In the following, we define two properties that will be verified to be ‘equivalent’

to (D7) – dynamic consistency.

Definition 3.2.4. For a function α : T ×D×Ω → [0, +∞], two properties are defined

as follows:

(D7-I) For a given t ∈ {0, 1, . . . , T − 1} and D, D′ ∈ D, if Dt(ω) = D′
t(ω) = 0 for all

ω ∈ Ω, and there exists a non-negative Ft-measurable random variable m such

that αt+1(D, ω) ≥ m(ω) ≥ αt+1(D
′, ω) for all ω ∈ Ω, then αt(D, ω) ≥ m(ω) ≥

αt(D
′, ω) for all ω ∈ Ω.

(D7-II) For a given t ∈ {0, 1, . . . , T − 1} and D ∈ D, if Dt(ω) = 0 for all ω ∈ Ω, then

1A min
ω∈A

αt+1(D,ω) ≤ 1Aαt(D) ≤ 1A max
ω∈A

αt+1(D, ω) ,

for all A ∈ Ft.
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We observe that (D7-I) is more restrictive than (D7), that is if a dynamic

acceptability index α satisfies (D7), it also satisfies (D7-I).

Property (D7-II) shows that if a portfolio has a zero value today, then this

portfolio is acceptable at most the maximum level of tomorrow and at least the min-

imum level of tomorrow. From mathematical point of view, it gives both maximum

and minimum of α.

Proposition 3.2.3. If a function α : T × D × Ω → [0, +∞] satisfies properties

(D2) – independence of the past, and (D3) – monotonicity, then (D7) and (D7-I) are

equivalent.

Proof. (D7-I) is stronger than (D7), then (D7) implies (D7-I).

Assume α satisfies (D2), (D3) and (D7-I), we will show that α also satisfy (D7).

For D, D′ ∈ D, if Dt(ω) ≥ 0 ≥ D′
t(ω) for all ω ∈ Ω, and there exists a non-negative

Ft-measurable random variable m such that αt+1(D, ω) ≥ m(ω) ≥ αt+1(D
′, ω) for all

ω ∈ Ω, define D̂ := 1{t+1,...,T}D and D̂′ := 1{t+1,...,T}D
′. By (D2) – independence of

the past of α,

αt+1(D̂, ω) = αt+1(D,ω) and αt+1(D̂′, ω) = αt+1(D
′, ω) ,

for all ω ∈ Ω. Then,

αt+1(D̂, ω) = αt+1(D, ω) ≥ m(ω) ≥ αt+1(D
′, ω) = αt+1(D̂′, ω) .

Since D̂t(ω) = D̂′
t(ω) = 0 for all ω ∈ Ω, by (D7-I),

αt(D̂, ω) ≥ m(ω) ≥ αt(D̂′, ω) . (3.6)

Note that Dt(ω) ≥ 0 ≥ D′
t(ω) for all ω ∈ Ω, then by the definition of D̂ and D̂′,

Ds(ω) ≥ D̂s(ω) and D̂′
s(ω) ≥ D′

s(ω) ,
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for all s ≥ t and ω ∈ Ω. By (D3) and (3.6),

αt(D,ω) ≥ αt(D̂, ω) ≥ m(ω) ≥ αt(D̂′, ω) ≥ αt(D
′, ω) ,

for all ω ∈ Ω. Therefore, (D7) holds true for α.

Corollary 3.2.2. As a direct result of Proposition 3.2.3, we conclude that the set of

properties (D1)-(D7) is equivalent to (D1)-(D6) and (D7-I).

The next proposition shows the equivalence between (D7-I) and (D7-II).

Proposition 3.2.4. If α is normalized, then (D7-I) and (D7-II) are equivalent.

Proof. First, we show that (D7-II) implies (D7-I). For D,D′ ∈ D, if Dt(ω) = D′
t(ω) =

0 for all ω ∈ Ω, and there exists a non-negative Ft-measurable random variable m

such that αt+1(D,ω) ≥ m(ω) ≥ αt+1(D
′, ω) for all ω ∈ Ω, then we can derive, for

each P t
i ∈ Υt,

1P t
i
αt+1(D,ω) ≥ 1P t

i
m(ω) ≥ 1P t

i
αt+1(D

′, ω) .

Denote ci := m(ω) where ω ∈ P t
i , then ci is a constant and

1P t
i

min
ω∈P t

i

αt+1(D,ω) ≥ 1P t
i
ci ≥ 1P t

i
max
ω∈P t

i

αt+1(D
′, ω) .

By (D7-II),

1P t
i
αt(D) ≥ 1P t

i
min
ω∈P t

i

αt+1(D, ω) ≥ 1P t
i
ci ≥ 1P t

i
max
ω∈P t

i

αt+1(D
′, ω) ≥ 1P t

i
αt(D

′) .

Since the above inequality holds true for all P t
i ∈ Υt, we get

αt(D, ω) ≥ m(ω) ≥ αt(D
′, ω), ∀ ω ∈ Ω .

Next, we show that (D7-I) implies (D7-II). For any D ∈ D, if Dt(ω) = 0 for

all ω ∈ Ω, define D′ and m as follows:

D′ := −1{t+1}1Ω ,

m :=
∑

P t
i ∈Υt

1P t
i

min
ω∈P t

i

αt+1(D,ω) .
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Then, m is a non-negative, Ft-measurable random variable, and Dt(ω) = D′
t(ω) = 0

for all ω ∈ Ω. In addition, since α is normalized, by Proposition 3.2.1,

1P t
i
αt+1(D) ≥ 1P t

i
min
ω∈P t

i

αt+1(D,ω) ≥ 0 = 1P t
i
αt+1(D

′) ,

for all P t
i ∈ Υt. Thus, αt+1(D, ω) ≥ m(ω) ≥ αt+1(D

′, ω) for all ω ∈ Ω. By (D7-I),

since Dt(ω) = D′
t(ω) = 0 for all ω ∈ Ω,

αt(D,ω) ≥ m(ω) ≥ αt(D
′, ω) .

Then, for all A ∈ Ft, by the definition of m,

1Aαt(D) ≥ 1A min
ω∈A

αt+1(D, ω) .

On the other hand, we define D′ and m as follows:

D′ := 1{t+1}1Ω ,

m :=
∑

P t
i ∈Υt

1P t
i
max
ω∈P t

i

αt+1(D, ω) .

By analogous argument, for all A ∈ Ft, we can verify that

1A max
ω∈A

αt+1(D, ω) ≥ 1Aαt(D) .

Corollary 3.2.3. Using Proposition 3.2.3 and Proposition 3.2.4 we conclude that, if

a function α : T ×D×Ω → [0, +∞] is normalized and satisfies (D2) – independence of

the past, and (D3) – monotonicity, then (D7) and (D7-II) are equivalent for function

α.

3.2.3 Relevancy Property of DCAIs. In dynamic framework, as time passes,

more and more possible states are excluded from happening in the future. Relevancy

implies that the index level at current time t should be irrelevant with those excluded

states.
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We provide alternative properties for both (D3) and (D7) in terms of relevancy.

Definition 3.2.5. For a function α : T ×D×Ω → [0, +∞], two properties are defined

as follows:

(D3-I) For any t ∈ T , D,D′ ∈ D, if there exists A ∈ Ft such that 1ADs ≥ 1AD′
s for

all s ≥ t, then 1Aαt(D) ≥ 1Aαt(D
′);

(D7-III) For any t ∈ {0, 1, . . . , T − 1} and D, D′ ∈ D, if there exists A ∈ Ft and a

non-negative Ft-measurable random variable m, such that 1ADt ≥ 0 ≥ 1AD′
t

and 1Aαt+1(D) ≥ 1Am ≥ 1Aαt+1(D
′), then 1Aαt(D) ≥ 1Am ≥ 1Aαt(D

′).

Proposition 3.2.5. A normalized α : T ×D×Ω is a dynamic coherent acceptability

index if and only if it satisfies (D1),(D2),(D3-I),(D4),(D5),(D6) and (D7-III).

Proof. Sufficiency. It is obvious if A = Ω in (D3-I) and (D7-III).

Necessity. All we need to prove is that a dynamic coherent acceptability

index α satisfies (D3-I) and (D7-III).

First, we show that α satisfies (D3-I). For D, D′ ∈ D, if there exists A ∈ Ft

such that 1ADs ≥ 1AD′
s for s ≥ t, we can define two new portfolios D̂ and D̂′ such

that, D̂ := 1{t,...,T}1AD and D̂′ := 1{t,...,T}1AD′. By (D2) – independence of the past

of α,

1Aαt(D̂) = 1Aαt(D) and 1Aαt(D̂′) = 1Aαt(D
′) .

We observe that 1AD̂s ≥ 1AD̂′
s and 1{Ω\A}D̂s = 1{Ω\A}D̂′

s = 0 for s ≥ t. It implies

D̂s(ω) ≥ D̂′
s(ω) for all ω ∈ Ω, s ≥ t. By (D3), we have αt(D̂) ≥ αt(D̂′). Thus,

1Aαt(D) = 1Aαt(D̂) ≥ 1Aαt(D̂′) = 1Aαt(D
′) .

Second, we show that α satisfies (D7-III). For D,D′ ∈ D, if there exists A ∈ Ft

such that 1ADt ≥ 0 ≥ 1AD′
t, and a non-negative Ft-measurable random variable m
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such that 1Aαt+1(D) ≥ 1Am ≥ 1Aαt+1(D
′), define m̃ := αt(1t+11Ω), and two new

portfolios D̂ := 1{t,...,T}1AD − 1{t+1}1{Ω\A} and D̂′ := 1{t,...,T}1AD′ − 1{t+1}1{Ω\A}. By

(D2) – independence of the past of α,

1Aαt(D̂) = 1Aαt(D) , 1Aαt+1(D̂) = 1Aαt+1(D) .

1Aαt(D̂′) = 1Aαt(D
′) , 1Aαt+1(D̂′) = 1Aαt+1(D

′) .

Then,

1Aαt+1(D̂) = 1Aαt+1(D) ≥ 1Am ≥ 1Aαt+1(D
′) = 1Aαt+1(D̂′) .

By the definition of D̂ and D̂′, together with (D2) and Proposition 3.2.1, we get

1{Ω\A}αt+1(D̂) = 1{Ω\A}αt+1(D̂′) = 0 .

Thus,

αt+1(D̂) ≥ 1Am ≥ αt+1(D̂′) .

Note that D̂t ≥ 0 ≥ D̂′
t. By (D7), we have αt(D̂) ≥ 1Am ≥ αt(D̂′). Finally, we

conclude that

1Aαt(D) = 1Aαt(D̂) ≥ 1Am ≥ 1Aαt(D̂′) = 1Aαt(D
′) .

As a conclusion of this section, we stress that normality for DCAIs is required

for Proposition 3.2.1, Proposition 3.2.4, Proposition 3.2.5 and their related corollaries.

Later on, we will show that normality is also an important property necessary for most

major results for DCAIs.

3.3 Definition and Properties of DCRMs

As mentioned in Chapter 2, there is a strong relationship between coherent

acceptability indices and coherent risk measures. In fact, as seen from Theorem



32

2.1.1, any SCAI α can be represented in terms of a family of coherent risk measures

ρx, x > 0:

α(D) = sup{x ∈ [0, +∞) : ρx(D) ≤ 0} . (3.7)

Looking at (3.7) one might think that a natural approach to constructing a DCAI

would be to use this representation but to replace the static coherent risk measures in

(3.7) by their dynamic counterpart. The representation (3.15) that we derive below

shows that this is indeed the case. The delicate issue however is, what family of

dynamic coherent risk measures should be used. It turns out that in order to produce

a DCAI satisfying a financially acceptable set of dynamic properties, one needs to

use a carefully crafted family of dynamic coherent risk measures. In this section

we introduce such a family of dynamic coherent risk measures and we compare our

definition of coherent dynamic risk measures with an analogous one that has been

studied in other literature.

Definition 3.3.1. Dynamic coherent risk measure is a function ρ : T × D × Ω → R

that satisfies the following properties:

(A1) Adaptiveness. ρt(D) is Ft-measurable for all t ∈ T and D ∈ D;

(A2) Independence of the past. If 1ADs = 1AD′
s for some t ∈ T , D, D′ ∈ D, and

A ∈ Ft and for all s ≥ t, then 1Aρt(D) = 1Aρt(D
′);

(A3) Monotonicity. If Ds(ω) ≥ D′
s(ω) for some t ∈ T and D, D′ ∈ D, and for all

s ≥ t and ω ∈ Ω, then ρt(D,ω) ≤ ρt(D
′, ω) for all ω ∈ Ω;

(A4) Homogeneity. ρt(λD, ω) = λρt(D, ω) for all λ > 0, D ∈ D, t ∈ T , and

ω ∈ Ω;

(A5) Subadditivity. ρt(D + D′, ω) ≤ ρt(D, ω) + ρt(D
′, ω) for all t ∈ T , D,D′ ∈ D,

and ω ∈ Ω;
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(A6) Translation invariance. ρt(D +m1{s}) = ρt(D)−m for every t ∈ T , D ∈ D,

Ft-measurable random variable m, and all s ≥ t;

(A7) Dynamic consistency.

1A(min
ω∈A

ρt+1(D, ω) − Dt) ≤ 1Aρt(D) ≤ 1A(max
ω∈A

ρt+1(D, ω) − Dt) ,

for every t ∈ {0, 1, . . . , T − 1}, D ∈ D and A ∈ Ft.

In the previous section, we introduced the normality of DCAIs. We now

present the normality of DCRMs.

Proposition 3.3.1. If ρ is a dynamic coherent risk measure, then ρt(c1{s}, ω) = −c,

for all c ∈ R, t ∈ T , ω ∈ Ω and s ≥ t.

Proof. Given some fixed t ∈ T and ω ∈ Ω, denote by λ := ρt(0, ω). Then, by (A6) –

translation invariance of ρ, we deduce

ρt(c1{s}, ω) = ρt(0, ω) − c = λ − c , (3.8)

for all c ∈ R. In particular, for c = 1, we have ρt(1{s}, ω) = λ − 1. Hence, by (A4) –

homogeneity of ρ, it follows that

ρt(cu1{s}, ω) = cuρt(1{s}, ω)

= cu(λ − 1) , for all cu > 0.

Combining this with (3.8) we get λ− cu = cuλ− cu, and consequently λ(1− cu) = 0.

Since the last equality holds true for arbitrary positive cu, we have that λ = 0, and

thus ρt(0, ω) = 0. Thus, by (3.8), ρt(c1{s}, ω) = ρt(0, ω) − c = −c.

Note that, in particular, ρt(0) = 0, for all t ∈ T .

We want to mention that our definition of DCRM differs from the definition given

in previous studies essentially only by the dynamic consistency property. For sake of



34

completeness, we will present here how property (A7) relates to two other forms of

dynamic consistency found in [13] and [42].

(A7-I) For all times t = 0, . . . , T−1 and positions D, D′ ∈ D with Dt = D′
t the following

holds true: ρt+1(D, ω) = ρt+1(D
′, ω) for all ω ∈ Ω implies ρt(D, ω) = ρt(D

′, ω)

for all ω ∈ Ω;

(A7-II) ρt(D) = ρt(Dt1{t}−ρt+1(D)1{t+1}) for all times t = 0, 1, . . . , T −1 and positions

D ∈ D.

(A7-I) is the dynamic consistency property for DCRM defined by Riedel [42]. Prop-

erty (A7-II) can be viewed as a dynamic programming principle similar to the dynamic

consistency defined by, for example, Cheridito, Delbaen and Kupper [13]. However,

it should be mentioned that in [13] the set of objects for which the risk is measured

is different from ours, and hence the comparison is rather formal. The objects we are

working with are dividend processes, whereas value processes are considered in [13].

Our approach is closest to the DCRM defined by Riedel [42].

Other researchers also proposed various dynamic consistency properties, see

for instance [4, 7, 8, 22, 25, 28, 43, 49].

Proposition 3.3.2. If a function ρ : T ×D×Ω → R satisfies (A1)-(A6), then (A7-I)

is equivalent to (A7-II).

Proof. First, we show that (A7-I) implies (A7-II). Given a position D ∈ D, we define

another position D̃ := 1{t}D − 1{t+1}ρt+1(D). By (A1) – independence of the past

and (A6) – translation invariance,

ρt+1(D̃) = ρt+1(−1{t+1}ρt+1(D)) = ρt+1(0) + ρt+1(D) = ρt+1(D) .

By the definition of D̃, we have D̃t = Dt. Therefore, by (A7-I),

ρt(D) = ρt(D̃) = ρt(Dt1{t} − ρt+1(D)1{t+1}) .
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Second, we show that (A7-II) implies (A7-I). If Dt = D′
t and ρt+1(D) =

ρt+1(D
′), we define two new positions D̃ := Dt1{t}−ρt+1(D)1{t+1} and D̄ := D′

t1{t}−

ρt+1(D
′)1{t+1}. We can observe that D̃ = D̄. By (A2) – independent of past, we have

ρt(D̃) = ρt(D̄). Then, (A7-II) implies,

ρt(D) = ρt(D̃) = ρt(D̄) = ρt(D
′) .

Finally, (A7-I) holds true.

Given the risk at time t + 1, we are able to apply dynamic programming

principle to compute the risk at time t. The next proposition will show the relationship

of our dynamic consistency and dynamic programming principle.

Proposition 3.3.3. For a function ρ : T × D × Ω → R, if (A1)-(A6) hold true,

(A7-II) – dynamic programming principle implies (A7). Hence, (A7) is more general

than (A7-II).

Proof. For all t ∈ {0, 1, . . . , T − 1}, D ∈ D and A ∈ Ft, by (A7-II) – dynamic

programming principle, (A6) – translation invariance and (A2) – independence of the

past,

1Aρt(D) = 1Aρt(Dt1{t} − ρt+1(D)1{t+1})

= 1Aρt(−ρt+1(D)1{t+1}) − 1ADt

= 1Aρt(−1Aρt+1(D)1{t+1}) − 1ADt .

Define two new positions D̃min and D̃max as follows:

D̃min := −1t+11A min
ω∈A

ρt+1(D,ω) ,

D̃max := −1t+11A max
ω∈A

ρt+1(D, ω) .
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Note that

−1A min
ω∈A

ρt+1(D, ω) ≥ −1Aρt+1(D, ω) ,

−1A max
ω∈A

ρt+1(D, ω) ≤ −1Aρt+1(D, ω) .

Together with (A3) – monotonicity, we get

ρt(D̃min) ≤ ρt(−1{t+1}1Aρt+1(D)) ,

ρt(D̃max) ≥ ρt(−1{t+1}1Aρt+1(D)) .

Since A ∈ Ft, we observe that −1A minω∈A ρt+1(D, ω) is Ft-measurable. Thus, by

(A6) – translation invariance,

ρt(D̃min) = ρt(0) + 1A min
ω∈A

ρt+1(D, ω) = 1A min
ω∈A

ρt+1(D, ω)

ρt(D̃max) = ρt(0) + 1A max
ω∈A

ρt+1(D, ω) = 1A max
ω∈A

ρt+1(D,ω) .

From all the above, we can derive that

1Aρt(D) = 1Aρt(−1Aρt+1(D)1{t+1}) − 1ADt

≥ 1Aρt(D̃min) − 1ADt

= 1A min
ω∈A

ρt+1(D, ω) − 1ADt

= 1A(min
ω∈A

ρt+1(D, ω) − Dt) ,

and

1Aρt(D) = 1Aρt(−1Aρt+1(D)1{t+1}) − 1ADt

≤ 1Aρt(D̃max) − 1ADt

= 1A max
ω∈A

ρt+1(D,ω) − 1ADt

= 1A(max
ω∈A

ρt+1(D,ω) − Dt) .

Finally, (A7) holds true. Hence, we conclude that (A7) is more general than (A7-

II).
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Corollary 3.3.1. Using Proposition 3.3.2 and Proposition 3.3.3, we conclude that if

(A1)-(A6) hold true, (A7) is more general than (A7-I).

3.4 Duality between DCAIs and DCRMs

We start this section with several definitions that will be used in the main

results derived in this section.

Definition 3.4.1. A family of dynamic coherent risk measures (ρx)x∈(0,+∞) is called

increasing if ρx
t (D, ω) ≥ ρy

t (D, ω), for all x ≥ y > 0, t ∈ T , D ∈ D and ω ∈ Ω.

Definition 3.4.2. A family of dynamic coherent risk measures (ρx)x∈(0,+∞) is called

left-continuous if lim
x→x−

0

ρx
t (D, ω) = ρx0

t (D,ω), for all t ∈ T , D ∈ D, and ω ∈ Ω.

Theorem 3.4.1. Assume that α is a normalized dynamic coherent acceptability index.

Then, the set of functions ρx, x ∈ R, defined by

ρx
t (D,ω) := inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} , (3.9)

for all t ∈ T , D ∈ D and ω ∈ Ω, is an increasing, left-continuous family of dynamic

coherent risk measures.

Proof. First we will show that ρx defined by (3.9) is well-defined. Since α is normal-

ized, by Corollary 3.2.1, for all t ∈ T , D ∈ D, there exist two finite constants cu and

cl such that

αt(D + cu1{t}, ω) = +∞ and αt(D + cl1{t}, ω) = 0 ,

for all ω ∈ Ω. Hence, for every x ∈ (0, +∞), the set {c ∈ R : αt(D + c1{t}, ω) ≥ x} is

not empty, and cl ≤ inf{c ∈ R : αt(D + c1{t}, ω) ≥ x}. From here we conclude that

infimum from (3.9) is finite, and hence ρx is well-defined.

Next we will show that ρx, x ∈ (0, +∞), satisfies the properties (A1)-(A7).
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Fix any P t
i ∈ Υt, by (D1)-adaptiveness of α,

αt(D + c1{t}, ω1) = αt(D + c1{t}, ω2) ,

for every t ∈ T , D ∈ D, c ∈ R and every ω1, ω2 ∈ P t
i . Hence,

{c ∈ R : αt(D + c1{t}, ω1) ≥ x} = {c ∈ R : αt(D + c1{t}, ω2) ≥ x} ,

for all x ∈ (0, +∞). Taking the infimum of both sides, we get

inf{c ∈ R : αt(D + c1{t}, ω1) ≥ x} = inf{c ∈ R : αt(D + c1{t}, ω2) ≥ x} ,

which consequently implies that ρx
t (D,ω1) = ρx

t (D,ω2) for every ω1, ω2 ∈ P t
i . Since

the above argument holds true for all P t
i ∈ Υt, we know ρx

t is Ft-measurable and (A1)

is verified.

By (D2) – independence of the past of α, we have that

inf{c ∈ R : αt(D + c1{t}, ω
0) ≥ x} = inf{c ∈ R : αt(D

′ + c1{t}, ω
0) ≥ x} ,

for any t ∈ T , D,D′ ∈ D such that 1ADs = 1AD′
s, for all s ≥ t, and for every

ω0 ∈ A ∈ Ft. From here, by (3.9), we have that ρx
t (D, ω0) = ρx

t (D
′, ω0), hence (A2)

is satisfied for all x ∈ (0, +∞).

Next we will prove that ρx satisfies (A3). Assume that t ∈ T and D, D′ ∈ D

are such that Ds(ω) ≥ D′
s(ω) for all s ≥ t and ω ∈ Ω. Then, for all c ∈ R,

(D + c1{t})s(ω) ≥ (D′ + c1{t})s(ω) for s ≥ t and ω ∈ Ω .

By (D3) – monotonicity of α,

αt(D + c1{t}, ω) ≥ αt(D
′ + c1{t}, ω) , (3.10)

for all c ∈ R and ω ∈ Ω. From here, we deduce the following inclusion

{c ∈ R : αt(D + c1{t}, ω) ≥ x} ⊇ {c ∈ R : αt(D
′ + c1{t}, ω) ≥ x} .
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Taking infimum of both sets, by the definition of ρx, the monotonicity (A3) follows.

Similarly, the homogeneity of ρx follows from the scale invariance of α.

Next we show that ρx satisfies (A5). Let t ∈ T , D, D′ ∈ D and ω ∈ Ω, and let

us take c1, c2 ∈ R such that

αt(D + ci1{t}, ω) ≥ x , i = 1, 2.

Then, by (D5) – quasi-concavity of α,

αt(
1

2
D +

1

2
c11{t} +

1

2
D′ +

1

2
c21{t}, ω) ≥ x ,

and therefore by (D4) – scale invariance of α, we get αt(D+D′ +(c1 +c2)1{t}, ω) ≥ x.

This implies that c1 + c2 ∈ {c ∈ R : αt(D + D′ + c1{t}, ω) ≥ x}. Hence,

c1 + c2 ≥ inf{c ∈ R : αt(D + D′ + c1{t}, ω) ≥ x}

= ρx
t (D + D′, ω) . (3.11)

Note that the above inequality holds true for all c1 ∈ {c ∈ R : αt(D + c1{t}, ω) ≥ x}

and c2 ∈ {c ∈ R : αt(D
′ + c1{t}, ω) ≥ x}. By taking infimum in (3.11), first with

respect to c1, and then with respect to c2, we get the following inequality,

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} + inf{c ∈ R : αt(D
′ + c1{t}, ω) ≥ x}

≥ ρx
t (D + D′, ω) .

By the definition (3.9) of ρx, we have, ρx
t (D, ω) + ρx

t (D
′, ω) ≥ ρx

t (D + D′, ω), and

hence (A5) is checked.

Now we will check that ρx satisfies (A6), translation invariance. Fix an ω0 ∈ Ω,

t ∈ T , D ∈ D and an Ft-measurable random variable m. Denote by P t
i the unique

element of partition of Ft such that ω0 ∈ P t
i . This yields that the cash-flows m1{t}

and m(ω0)1{t} agree on the set P t
i , and for all times s ≥ t. Then, for any constant

c ∈ R, we have

1P t
i
(D + m1t + c1{t})s = 1P t

i
(D + m(ω0)1{t} + c1{t})s , for s ≥ t .
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By (D2) – independence of the past of α,

1P t
i
αt(D + m1t + c1{t}) = 1P t

i
αt(D + m(ω0)1{t} + c1{t}) .

Since m is Ft-measurable, by (D6) – translation invariance of α,

αt(D + m1s + c1{t}, ω
0) = αt(D + m1t + c1{t}, ω

0) , for all s ≥ t.

Combining the above with (3.9), we deduce

ρx
t (D + m1{s}, ω

0) = inf{c ∈ R : αt(D + m1{s} + c1{t}, ω
0) ≥ x}

= inf{c ∈ R : αt(D + m1{t} + c1{t}, ω
0) ≥ x}

= inf{c ∈ R : αt(D + m(ω0)1{t} + c1{t}, ω
0) ≥ x}

= inf{m(ω0) + c ∈ R : αt(D + (m(ω0) + c)1{t}, ω
0) ≥ x} − m(ω0)

= ρx
t (D, ω) − m(ω0) .

Since ω0 is arbitrarily chosen in Ω, we obtain ρx
t (D + m1{s}) = ρx

t (D) − m, for all

s ≥ t, and (D6) is checked.

Next we will show that ρx satisfies (A7), dynamic consistency. Assume that

t ∈ T , D ∈ D and A ∈ Ft are fixed, and denote by ct,D,A
min := min

ω∈A
ρx

t+1(D, ω) and

ct,D,A
max := max

ω∈A
ρx

t+1(D,ω). By the definition (3.9) of ρx,

c0 < inf{c ∈ R : αt+1(D + c1{t+1}, ω) ≥ x} ,

for any c0 < ct,D,A
min and ω ∈ A. Thus,

αt+1(D + c01{t+1}, ω) < x ,

for all ω ∈ A. Due to the finiteness of the probability space Ω, there exists a number

ϵA,c0 > 0, such that αt+1(D + c01{t+1}, ω) ≤ x − ϵA,c0 , for all ω ∈ A. By (D2) –

independent of the past of α,

αt+1(D − Dt1{t} + c01{t+1}, ω) = αt+1(D + c01{t+1}, ω) ≤ x − ϵA,c0 ,
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for all ω ∈ A. Note that 1A(D − Dt1{t} + c01{t+1})t = 1A(Dt − Dt) = 0. Since α is a

normalized DCAI, by Corollary 3.2.3, we know that α also satisfied (D7-II). Then,

αt(D − Dt1{t} + c01{t+1}, ω) ≤ 1A max
ω̄∈A

αt+1(D − Dt1{t} + c01{t+1}, ω̄) ≤ x − ϵA,c0 ,

for all ω ∈ A. Consequently, since c0 is a constant, by (D6)

αt(D + (c0 − Dt)1{t}, ω) = αt(D − Dt1{t} + c01{t}, ω)

= αt(D − Dt1{t} + c01{t+1}, ω)

≤ x − ϵA,c0 < x ,

for all ω ∈ A and c0 < ct,D,A
min . By the definition of ρx

ρx
t (D, ω) = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} ≥ c0 − Dt(ω) ,

for all ω ∈ A and c0 < ct,D,A
min . Hence, ρx

t (D, ω) ≥ ct,D,A
min − Dt(ω), or equivalently

1Aρx
t (D) ≥ 1A(minω∈A ρx

t+1(D, ω) − Dt). Similarly, one can show that 1Aρx
t (D) ≤

1A(maxω∈A ρt+1(D,ω) − Dt), and thus (A7) is established. All the above imply that

ρx is a DCRM for every x > 0.

Assume that x ≥ y > 0. Then

{c ∈ R : αt(D + c1{t}, ω) ≥ x} ⊆ {c ∈ R : αt(D + c1{t}, ω) ≥ y} ,

which implies implies that

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} ≥ inf{c ∈ R : αt(D + c1{t}, ω) ≥ y} .

Therefore, by definition (3.9) of ρx, we have

ρx
t (D, ω) ≥ ρy

t (D, ω) ,

for all t ∈ T , D ∈ D, ω ∈ Ω and x ≥ y > 0. Hence, the family of dynamic coherent

risk measures (ρx)x∈(0,+∞) is non-decreasing.
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Finally, we will show that (ρx)x∈(0,+∞) is left-continuous. Let x0 be any positive

number. Then,

{c ∈ R : αt(D + c1{t}, ω) ≥ x0} ⊆ {c ∈ R : αt(D + c1{t}, ω) ≥ x} ,

for all x < x0. Taking infimum of both sides, we get

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} ≥ inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} . (3.12)

By taking the left limit of the right hand side, we have,

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} ≥ lim
x→x−

0

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} . (3.13)

If the above inequality holds strictly, then there exists a constant c0 such that,

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} > c0 > lim
x→x−

0

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} .

(3.14)

Note that, by (3.12), inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} is an non-decreasing function

with respect to x. Therefore, the second inequality in (3.14) implies that,

c0 > inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} ,

for all x < x0. Hence, by (D3) – monotonicity of α, αt(D + c01{t}, ω) ≥ x, for all

x < x0, and thus

αt(D + c01{t}, ω) ≥ lim
x→x−

0

x = x0 .

On the other hand, by the first inequality in (3.14), we deduce that,

αt(D + c01{t}, ω) < x0 .

Contradiction. Therefore, we should have strict equality in (3.13).

Next theorem shows the representation of a DCAI in terms of a family of DCRMs.
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Theorem 3.4.2. Assume that (ρx)x∈(0,+∞) is an increasing family of dynamic coher-

ent risk measures. Then the function α defined as follows,

αt(D, ω) := sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} , (3.15)

for t ∈ T , D ∈ D and ω ∈ Ω, is a normalized, right-continuous, dynamic coherent

acceptability index.

Proof. Note that the assumption sup ∅ = 0 guarantees that α from (3.15) is well-

defined and takes values in [0, +∞].

In the following, we will prove that α defined in (3.15) satisfies the properties

(D1)–(D7).

(D1) - adaptiveness, and (D2) - independence of the past, follow immediately

from the definition of α, and from adaptiveness (A1) and independence of the past

(A2) of ρx.

Let t ∈ T , D, D′ ∈ D, and assume that Ds(ω) ≥ D′
s(ω) for all s ≥ t, and

ω ∈ Ω. By (A3) – monotonicity of ρx,

ρx
t (D) ≤ ρx

t (D
′) , for all x > 0 . (3.16)

Note that, for any x0 ∈ {x ∈ (0, +∞) : ρx
t (D

′, ω) ≤ 0}, we have ρx0
t (D′, ω) ≤ 0, which

combined with (3.16) implies ρx0
t (D, ω) ≤ ρx0

t (D′, ω) ≤ 0 , ω ∈ Ω. Therefore,

{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} ⊇ {x ∈ (0, +∞) : ρx

t (D
′, ω) ≤ 0}

By taking supremum of both sides, we get

sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤ 0} ≥ sup{x ∈ (0, +∞) : ρx

t (D
′, ω) ≤ 0} ,

and hence, by the definition (3.15) of α, property (D3) follows.
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By homogeneity (A4) of ρx, for every λ > 0, D ∈ D, t ∈ T and ω ∈ Ω, we

have,

αt(λD, ω) = sup{x ∈ (0, +∞) : λρx
t (D,ω) ≤ 0}

= sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0}

= αt(D,ω) .

Therefore, α is scale invariant and satisfies (D4).

Next we will prove that α is quasi-concave. For given t ∈ T , and x0 ∈ (0, +∞],

if D,D′ ∈ D are such that αt(D, ω) ≥ x0, αt(D
′, ω) ≥ x0, then, by definition (3.15)

of α, we have

sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} ≥ x0 ,

sup{x ∈ (0, +∞) : ρx
t (D

′, ω) ≤ 0} ≥ x0 .

Using these, and monotonicity of ρx in x, we conclude that for any x < x0,

ρx
t (D, ω) ≤ 0 , ρx

t (D, ω) ≤ 0 .

By (A4), homogeneity of ρx, we note that for any λ ∈ [0, 1] and x < x0,

ρx
t (λD, ω) = λρx

t (D,ω) ≤ 0 ,

ρx
t ((1 − λ)D′, ω) = (1 − λ)ρx

t (D
′, ω) ≤ 0 .

From here, by (A5), subadditivity of ρx, we get

ρx
t (λD + (1 − λ)D′, ω) ≤ ρx

t (λD, ω) + ρx
t ((1 − λ)D′, ω) ≤ 0 ,

for any x < x0. Hence sup{x ∈ (0, +∞) : ρx
t (λD + (1 − λ)D′, ω) ≤ 0} ≥ x0, and

thus, by definition (3.15) of α, we have, α(λD + (1 − λ)D′, ω) ≥ x0. This yields

quasi-concavity of α.



45

Assume that D ∈ D, and m is an Ft-measurable random variable. By (3.15)

and (A6), we get

αt(D + m1{s}, ω) = sup{x ∈ (0, +∞) : ρx
t (D + m1{s}, ω) ≤ 0}

= sup{x ∈ (0, +∞) : ρx
t (D + m1{t}, ω) ≤ 0}

= αt(D + m1{t}, ω) ,

for all s ≥ t and ω ∈ Ω. Hence, α satisfies property (A6).

Now, let us show that α satisfies dynamic consistency property (D7). Assume

that D,D′ ∈ D, and t ∈ T are such that Dt(ω) ≥ 0 ≥ D′
t(ω) for all ω ∈ Ω, and

there exists a non-negative Ft-measurable random variable m such that αt+1(D,ω) ≥

m(ω) ≥ αt+1(D
′, ω) for all ω ∈ Ω. By definition (3.15),

sup{x ∈ (0, +∞) : ρx
t+1(D,ω) ≤ 0} ≥ m(ω) ≥ sup{x ∈ (0, +∞) : ρx

t+1(D
′, ω) ≤ 0} ,

for all ω ∈ Ω. Let us fix an ω̄ ∈ Ω, and denote by c̄ := m(ω̄). There exists a P t
i ∈ Υt

such that ω̄ ∈ P t
i . From the above inequality, we conclude that for all ω ∈ P t

i ,

sup{x ∈ (0, +∞) : ρx
t+1(D,ω) ≤ 0} ≥ c̄ ≥ sup{x ∈ (0, +∞) : ρx

t+1(D
′, ω) ≤ 0} .

Then, for all c′ > c̄ and ω ∈ P t
i , c′ > sup{x ∈ (0, +∞) : ρx

t+1(D
′, ω) ≤ 0}, which

consequently implies that

ρc′

t+1(D
′, ω) > 0 . (3.17)

Also note that sup{x ∈ (0, +∞) : ρx
t+1(D,ω) ≤ 0} > c, for any c < c̄. By monotonic-

ity of ρx with respect to x, we have ρc
t+1(D,ω) ≤ 0, ω ∈ P t

i . Due to the finiteness of

Ω, (3.17) implies that

min
ω∈P t

i

ρc′

t+1(D
′, ω) > 0 ,
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for all c′ > c̄. Using (A7), dynamic consistency of ρx, we get the following

1P t
i
ρc′

t (D′) ≥ 1P t
i
(min
ω∈P t

i

ρc′

t+1(D
′, ω) − D′

t)

= 1P t
i

min
ω∈P t

i

ρc′

t+1(D
′, ω) − 1P t

i
D′

t, c′ > c̄ .

Equivalently,

ρc′

t (D′, ω) ≥ min
ω∈P t

i

ρc′

t+1(D
′, ω) − D′

t(ω) > −D′
t(ω) ≥ 0 , (3.18)

for all ω ∈ P t
i , and c′ > c̄.

If

c̄ < sup{x ∈ (0, +∞) : ρx
t (D

′, ω′) ≤ 0} ,

for some ω′ ∈ P t
i , then there exists a constant c0 such that

c̄ < c0 < sup{x ∈ (0, +∞) : ρx
t (D

′, ω′) ≤ 0} .

This implies that ρc0

t (D′, ω′) ≤ 0, that contradicts (3.18). Therefore,

c̄ ≥ sup{x ∈ (0, +∞) : ρx
t (D

′, ω) ≤ 0} ,

and by (3.15), we have

c̄ ≥ αt(D
′, ω) , ω ∈ P t

i . (3.19)

By similar arguments, one can show that

c̄ ≤ αt(D,ω) , ω ∈ P t
i . (3.20)

Since ω̄ was arbitrarily chosen, by (3.19) and (3.20), we finally conclude that,

αt(D,ω) ≥ m(ω) ≥ αt(D
′, ω), for all ω ∈ Ω .

Thus (A7) is checked.

Let us show that α is right-continuous. Given t ∈ T , D ∈ D and ω ∈ Ω, we

have

{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} ⊆ {x ∈ (0, +∞) : ρx

t (D, ω) ≤ c} ,
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for any constant c > 0. Taking the supremum of both sides, and then the limit of the

right hand side as c → 0+, we get

sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} ≤ lim

c→0+
sup{x ∈ (0, +∞) : ρx

t (D,ω) ≤ c} . (3.21)

If the above inequality holds strictly, then there exists x0 ∈ (0, +∞) such that

sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤ 0} < x0 < lim

c→0+
sup{x ∈ (0, +∞) : ρx

t (D, ω) ≤ c} .

(3.22)

The second inequality implies that

x0 < sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ c}, for all c > 0.

By monotonicity of ρx, we deduce that ρx0

t (D, ω) ≤ c. Since the last inequality holds

true for all c > 0, we have that

ρx0

t (D, ω) ≤ lim
c→0+

c = 0 ,

that contradicts first strict inequality in (3.22). Therefore, we have equality in (3.21).

Using this equality, and (A6), translation invariance of ρx, we write

αt(D,ω) = sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤ 0}

= lim
c→0+

sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤ c}

= lim
c→0+

sup{x ∈ (0, +∞) : ρx
t (D + c1{t}, ω) ≤ 0}

= lim
c→0+

αt(D + c1{t}, ω) ,

and continuity of α is established.

Finally, we will prove that α is normalized. Given a fixed t ∈ T , consider the

following cash-positions

Dpos := 1{t}, Dneg := −1{t} .
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Recall that ρt(0) = 0. By (3.15) and (A6), we have

αt(Dpos, ω) = sup{x ∈ (0, +∞) : ρx
t (1{t}, ω) ≤ 0}

= sup{x ∈ (0, +∞) : ρx
t (0, ω) − 1 ≤ 0}

= sup{x ∈ (0, +∞) : −1 ≤ 0} = +∞ .

Similarly, one can show that αt(Dneg, ω) = 0.

The proof is complete.

We conclude this section with two results: one provides a representation of a

DCAI in terms of a family of DCRMs; the other one gives a representation of DCRM

in terms of a DCAI.

Theorem 3.4.3. If α is a normalized, right-continuous, dynamic coherent accept-

ability index, then there exists a left-continuous and increasing family of dynamic

coherent risk measures (ρx)x∈(0,+∞), such that

αt(D,ω) = sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤ 0} . (3.23)

Proof. For every x ∈ (0, +∞), define ρx = (ρx
t )

T
t=0 as follows,

ρx
t (D,ω) := inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} , (3.24)

for all t ∈ T , D ∈ D and ω ∈ Ω. By Theorem 3.4.1, (ρx)x∈(0,+∞) is an increasing,

left-continuous, family of dynamic coherent risk measures. We will show that

αt(D,ω) = sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤ 0} ,

for all t ∈ T , D ∈ D and ω ∈ Ω.

Fix t ∈ T , D ∈ D, ω ∈ Ω. For all y0 > sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤ 0}, we

have ρy0
t (D, ω) > 0. By (3.24), inf{c ∈ R : αt(D + c1{t}, ω) ≥ y0} > 0, and hence,

αt(D,ω) = αt(D + 01{t}, ω) < y0 .
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Since the above inequality holds true for all y0 > sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤ 0},

we conclude that

αt(D, ω) ≤ sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} .

On the other hand, for all y0 < sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0}, since ρ is an

increasing function with respect to x, we have ρy0
t (D,ω) ≤ 0. By (3.24), inf{c ∈ R :

αt(D + c1{t}, ω) ≥ y0} ≤ 0, and hence, for all η > 0,

αt(D, ω) = αt(D + η1{t}, ω) ≥ y0 .

Since α is right-continuous,

αt(D,ω) = lim
η→0+

αt(D + η1{t}, ω) ≥ y0

Note that the above inequality holds true for all y0 < sup{x ∈ (0, +∞) : ρx
t (D,ω) ≤

0}, we conclude that

αt(D, ω) ≥ sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} .

Finally, we have that αt(D, ω) = sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0}.

Theorem 3.4.4. If (ρx)x∈(0,+∞) is a left-continuous and increasing family of dynamic

coherent risk measures, then there exists a right-continuous and normalized dynamic

coherent acceptability index α such that,

ρx
t (D, ω) = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} ,

Proof. Define the function α as follows,

αt(D, ω) := sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} , (3.25)

for all t ∈ T , D ∈ D and ω ∈ Ω. By Theorem 3.4.2, α is a right-continuous and

normalized dynamic coherent acceptability index.
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We will show that

ρx
t (D, ω) = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} ,

for all x ∈ (0, +∞), t ∈ T , D ∈ D and ω ∈ Ω.

Fix t ∈ T , D ∈ D, ω ∈ Ω and x0 ∈ (0, +∞). For all y0 > inf{c ∈ R :

αt(D + c1{t}, ω) ≥ x0}, we have αt(D + y01{t}, ω) ≥ x0. By (3.25), sup{x ∈ (0, +∞) :

ρx
t (D + y01{t}, ω) ≤ 0} ≥ x0, and hence for η > 0,

ρx0−η
t (D + y01{t}, ω) ≤ 0 .

Since ρx is a left-continuous function, we have that ρx0
t (D + y01{t}, ω) ≤ 0. By (A6),

ρx0
t (D, ω) ≤ y0. The above inequality holds for all y0 > inf{c ∈ R : αt(D + c1{t}, ω) ≥

x0}. Hence,

ρx0
t (D, ω) ≤ inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} .

On the other hand, for all y0 < inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0}, we have

αt(D + y01{t}, ω) < x0. By (3.25), sup{x ∈ (0, +∞) : ρx
t (D + y01{t}, ω) ≤ 0} < x0,

and hence,

ρx
t (D + y01{t}, ω) > 0 .

Then, by (A6), ρx
t (D,ω) > y0. The above inequality holds for all y0 < inf{c ∈ R :

αt(D + c1{t}, ω) ≥ x0}. Hence,

ρx0
t (D, ω) ≥ inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} .

Finally, we have that ρx0
t (D,ω) = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0}.

We conclude this chapter by summarizing the above four theorems in diagram.

Let us define

Anorm := the set of normalized DCAIs
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Anorm,cont := the set of normalized and right-continuous DCAIs

Rincr := the set of increasing families of DCRMs

Rincr,cont := the set of increasing and left-continuous families of DCRMs

Anorm (3.9) // Rincr,cont

∩
66

duality
nnnnnnnnnnnnnnnn

vvnnnnnnnnnnnnnnnn

Anorm,cont
oo (3.15)

∪

Rincr

Remark 3.4.1.

1. Anorm,cont ⊂ Anorm and Rincr,cont ⊂ Rincr.

2. A left-continuous, increasing family of DCRMs can be represented by a normal-

ized DCAI through (3.9).

3. A right-continuous, normalized DCAI can be represented by an increasing family

of DCRMs through (3.15).

4. There is duality between right-continuous, normalized DCAIs and left-continuous,

increasing families of DCRMs.
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CHAPTER 4

CONSISTENT SETS OF PROBABILITY MEASURES AND REPRESENTATION
THEOREMS

In Section 2.2 we examined the set of probability measures (scenarios) from

both mathematical and financial point of view. We showed that both SCRMs and

SCAIs can be represented in terms of sets of probability measures. In this chapter

we will discuss sets of probability measures in a dynamic setup.

Theorem 2.2.1 indicates that every set of probability measures generates a

SCRM. However, due to dynamic consistency property for DCRM, the set of proba-

bility measures that can generate a DCRM has to possess some additional features.

A set of probability measures having such additional features is referred to as a dy-

namic consistent set of probability measures. For a thorough discussion of various

definitions of dynamic consistent sets of probability measures and their relationship

with dynamic consistency property for dynamic risk measures we refer the reader to

[1, 12, 37] and references therein.

4.1 Dynamically Consistent Sequence of Sets of Probability Measures

In this section we shall discuss the concept of dynamically consistent sequence

of sets of probability measures, or, for short, consistent sets of probability measures.

Note that in dynamic setup, traditional researchers usually consider a fixed individual

set of probability measures over time, whereas our research will focus on a sequence

of sets of probability measures.

4.1.1 Definitions. Suppose we have the same mathematical setup and notations

as in Section 3.1. In what follows we denote by P the set of all absolutely continuous

probability measures with respect to the underlying probability P, and Pe the set

of all equivalent probability measures with respect to P. Recall that our standing
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assumption is that P has full support. Note that in this case, due to the finiteness of

Ω, the set P consists of all probability measures on Ω, and also Pe coincides with the

set of all probability measures on Ω of full support.

Definition 4.1.1. For any set of probability measures Q ⊂ P, its effective subset

efft,i(Q) with respect to P t
i ∈ Υt is defined as follows:

efft,i(Q) := {Q ∈ Q : Q(P t
i ) > 0} .

Definition 4.1.2. An individual set of probability measures Q ⊂ P is called full-

support with respect to filtration F if efft,i(Q) ̸= ∅ for all t ∈ T and i ∈ {1, 2, · · · , nt}.

Definition 4.1.3. A sequence of sets of probability measures {Qt}T
t=0 is called full-

support with respect to filtration F if efft,i(Qt) ̸= ∅ for all t ∈ T and i ∈ {1, 2, · · · , nt}.

Note that if an individual set of probability measures Q ⊂ P is full-support,

then a sequence of sets of probability measures {Qt}T
t=0 defined as Qt := Q for all

t ∈ T is full-support as well.

Definition 4.1.4. For any P t
i ∈ Υt, let Q be a subset of P with efft,i(Q) ̸= ∅. The

infimum conditional expectation inf
Q∈Q

EQ[X|P t
i ] is defined as follows:

inf
Q∈Q

EQ[X|P t
i ] := inf

Q∈efft,i(Q)
EQ[X|P t

i ] = inf
Q∈efft,i(Q)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

X(ω)

)

for all X ∈ G.

Definition 4.1.5. For any P t
i ∈ Υt, let Q be a subset of P with efft,i(Q) ̸= ∅. The

supremum conditional expectation sup
Q∈Q

EQ[X|P t
i ] is defined as follows:

sup
Q∈Q

EQ[X|P t
i ] := sup

Q∈efft,i(Q)

EQ[X|P t
i ] = sup

Q∈efft,i(Q)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

X(ω)

)

for all X ∈ G.
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We denote by inf
Q∈Q

EQ[X|Ft] a random variable such that for all P t
i ∈ Υt and

ω ∈ P t
i , inf

Q∈Q
EQ[X|Ft](ω) := inf

Q∈Q
EQ[X|P t

i ]. In addition, we denote by sup
Q∈Q

EQ[X|Ft]

a random variable such that for all P t
i ∈ Υt and ω ∈ P t

i , sup
Q∈Q

EQ[X|Ft](ω) :=

sup
Q∈Q

EQ[X|P t
i ].

Note that both inf
Q∈Q

EQ[X|Ft] and sup
Q∈Q

EQ[X|Ft] are Ft-measurable.

Definition 4.1.6. Let Q be a subset of P. Q is called strongly consistent with respect

to filtration F, if it is full-support and the following equality holds true

inf
Q∈Q

EQ

[
X | Ft

]
= inf

Q∈Q
EQ

[
inf

M∈Q
EM

[
X | Ft+1

]
| Ft

]
,

for every t ∈ {0, . . . , T − 1}, and X ∈ G.

Definition 4.1.7. Let Q be a subset of P. Q is called weakly consistent with respect

to filtration F, if it is full-support and the following inequality holds true

1A max
ω∈A

{
inf
Q∈Q

EQ
[
X|Ft+1

]
(ω)

}
≥ 1A inf

Q∈Q
EQ

[
X|Ft

]
,

for every t ∈ {0, . . . , T − 1}, A ∈ Ft, and X ∈ G.

The following proposition shows that a strongly consistent set of probability

measures is also weakly consistent.

Proposition 4.1.1. If a set of probability measures Q ⊆ P is strongly consistent,

then Q is also weakly consistent.

Proof. Q is strongly consistent indicates that Q is full-support with respect to F. By

Definition 4.1.7, it is enough to show that for each P t
i ∈ Υt,

max
ω∈P t

i

{
inf
Q∈Q

EQ
[
X|Ft+1

]
(ω)

}
≥ inf

Q∈Q
EQ

[
X|P t

i

]
.
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Since Q is strongly consistent, Definitions 4.1.6 and 4.1.4 implies

inf
Q∈Q

EQ
[
X|P t

i

]
= inf

Q∈Q
EQ

[
inf

M∈Q
EM

[
X | Ft+1

]
|P t

i

]
= inf

Q∈efft,i(Q)
EQ

[
1P t

i
inf

M∈Q
EM

[
X | Ft+1

]
|P t

i

]
≤ inf

Q∈efft,i(Q)
EQ

[
max
ω∈P t

i

{
inf
Q∈Q

EQ
[
X|Ft+1

]
(ω)

} ∣∣∣ P t
i

]
. (4.1)

Since max
ω∈P t

i

{
inf
Q∈Q

EQ
[
X|Ft+1

]
(ω)

}
is a constant, for each Q ∈ efft,i(Q),

EQ

[
max
ω∈P t

i

{
inf
Q∈Q

EQ
[
X|Ft+1

]
(ω)

} ∣∣∣ P t
i

]
= max

ω∈P t
i

{
inf
Q∈Q

EQ
[
X|Ft+1

]
(ω)

}
.

Therefore, (4.1) gives

inf
Q∈Q

EQ
[
X|P t

i

]
≤ max

ω∈P t
i

{
inf
Q∈Q

EQ
[
X|Ft+1

]
(ω)

}
.

Hence, Q is weakly consistent, and the proof is complete.

Next, we define the consistency on a sequence of sets of probability measures.

Definition 4.1.8. A sequence of sets of probability measures {Qt}T
t=0, with Qt ⊆ P,

is called dynamically consistent with respect to the filtration F, if the sequence is

full-support and the following inequality holds true

1A min
ω∈A

{
inf

Q∈Qt+1

EQ[X|Ft+1](ω)

}
≤ 1A inf

Q∈Qt

EQ[X|Ft]

≤ 1A max
ω∈A

{
inf

Q∈Qt+1

EQ[X|Ft+1](ω)

}
,

for every t ∈ {0, . . . , T − 1}, A ∈ Ft, and X ∈ G.

We will discuss how to construct dynamically consistent sequences of sets of

probability measures from dynamic consistent individual sets of probability measures.
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Proposition 4.1.2. For any full-support set of probability measures Q ⊆ P, the

following inequalities hold true

1A min
ω∈A

{
inf
Q∈Q

EQ[X|Ft+1](ω)

}
≤ 1A inf

Q∈Q
EQ[X|Ft] , (4.2)

inf
Q∈Q

EQ[ inf
M∈Q

EM[X|Ft+1]|Ft] ≤ inf
Q∈Q

EQ[X|Ft] , (4.3)

for every t ∈ {0, . . . , T − 1}, A ∈ Ft, and X ∈ G.

Proof. Fix t ∈ {0, . . . , T − 1} and P t
i ∈ Υt, by Proposition 3.1.1, we can write

P t
i = ∪ki

j=1P
t+1
i,j . Since Q is full-support, efft,i(Q) ̸= ∅. For any Q ∈ efft,i(Q),

EQ[X|P t
i ]

=
∑
ω∈P t

i

Q(ω)

Q(P t
i )

X(ω) =

ki∑
j=1

∑
ω∈P t+1

i,j

Q(ω)

Q(P t
i )

X(ω)

=
∑

Q(P t+1
i,j )̸=0

Q(P t+1
i,j )

Q(P t
i )

∑
ω∈P t+1

i,j

Q(ω)X(ω)

Q(P t+1
i,j )

. (4.4)

First, by (4.4) and Definition 4.1.4, for any Q ∈ efft,i(Q), we can derive that

EQ[X|P t
i ] ≥

∑
Q(P t+1

i,j )̸=0

Q(P t+1
i,j )

Q(P t
i )

min
ω∈P t

i

{
inf

M∈Q
EM

[
X|Ft+1

]
(ω)

}
= min

ω∈A

{
inf

M∈Q
EM[X|Ft+1](ω)

}
.

Hence,

inf
Q∈Q

EQ[X|P t
i ] = inf

Q∈efft,i(Q)
EQ[X|P t

i ] ≥ min
ω∈A

{
inf
Q∈Q

EQ[X|Ft+1](ω)

}
.

Then, (4.2) holds true for each P t
i ∈ Υt and therefore for all A ∈ Ft.
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Second, by (4.4) and Definition 4.1.4, for any Q ∈ efft,i(Q), we can derive that

EQ[X|P t
i ] ≥

∑
Q(P t+1

i,j )̸=0

Q(P t+1
i,j )

Q(P t
i )

inf
M∈Q

EM[X|P t+1
i,j ]

=
∑

Q(P t+1
i,j )̸=0

Q(P t+1
i,j )

Q(P t
i )

inf
M∈Q

EM[X|P t+1
i,j ] +

∑
Q(P t+1

i,j )=0

0 inf
M∈Q

EM[X|P t+1
i,j ]

=EQ[ inf
M∈Q

EM[X|Ft+1]|P t
i ] .

Consequently, after taking infimum of the right hand side in previous inequality, we

deduct that

EQ[X|Ft] ≥ inf
Q̃∈efft,i(Q)

EQ̃[ inf
M∈Q

EM[X|Ft+1]|Ft] , Q ∈ Qt,i ,

By Lemma B.0.1 and Definition 4.1.4, (4.3) follows.

The following useful corollary is a direct consequence of Proposition 4.1.2.

Corollary 4.1.1. If a set of probability measures Q ⊆ P is weakly consistent, then

{Qt}T
t=0, with Qt = Q, t ∈ T , is a dynamically consistent sequence of sets of proba-

bility measures.

Using Proposition 4.1.1 and Corollary 4.1.1, we also conclude the following

result.

Corollary 4.1.2. If a set of probability measures Q ⊆ P is strongly consistent,

then {Qt}T
t=0, with Qt = Q, t ∈ T , is a dynamically consistent sequence of sets of

probability measures.

4.1.2 Examples. The rest of the section is dedicated to examples of dynamically

consistent sequences of sets of probability measures.

Example 4.1.1. Singleton set Q = {Q}, with Q ∈ Pe, is full-support and clearly

strongly consistent. By Corollary 4.1.2 the constant sequence {Q,Q, . . . ,Q} is dy-

namically consistent. For simplicity of writing, we will denote this sequence by Qs.
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Lemma 4.1.1. For any t ∈ T , we have

nt∑
i=1

1P t
i

inf
Q∈P

EQ[D|Ft] =
nt∑
i=1

1P t
i

min
ω∈P t

i

D(ω) .

Proof. It is enough to show that for each P t
i ∈ Υt,

inf
Q∈efft,i(P)

EQ[D|P t
i ] = min

ω∈P t
i

D(ω) .

Note that for all Q ∈ efft,i(P),

EQ[D|P t
i ] =

∑
ω∈P t

i

D(ω)
Q(ω)

Q(P t
i )

≥ min
ω∈P t

i

D(ω)
∑
ω∈P t

i

Q(ω)

Q(P t
i )

= min
ω∈P t

i

D(ω)

Hence,

inf
Q∈efft,i(P)

EQ[D|P t
i ] ≥ min

ω∈P t
i

D(ω) . (4.5)

If we take ω̄ such that D(ω̄) = min
ω∈P t

i

D(ω), and Qn such that Qn(ω̄) = (1−1/n)Qn(P t
i )

and uniformly distributed in other states, we can prove that

lim
n→∞

EQ[D|P t
i ] = min

ω∈P t
i

D(ω) .

Note that Qn ∈ efft,i(P), then

inf
Q∈efft,i(P)

EQ[D|P t
i ] ≤ lim

n→∞
EQ[D|P t

i ] = min
ω∈P t

i

D(ω) .

The above inequality together with (4.5) implies

inf
Q∈efft,i(P)

EQ[D|P t
i ] = min

ω∈P t
i

D(ω) .

Example 4.1.2. Lemma 4.1.1 implies that the set P of all absolutely continuous

probability measures with respect to P, is strongly consistent. Hence, the constant

sequence {P ,P , . . . ,P} is dynamically consistent.
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Example 4.1.3. By similar argument with Lemma 4.1.1, we can prove that for any

P t
i ∈ Υt, inf

Q∈Pe
EQ[D|P t

i ] = min
ω∈P t

i

D(ω). It implies that the set Pe of all equivalent

probability measures with respect to P, is strongly consistent. Hence, the constant

sequence {Pe,Pe, . . . ,Pe} is dynamically consistent.

Example 4.1.4. Let a ≥ 1 be a real number. The following set of probability measures

Qa,u := {Q ∈ Pe | EP[dQ/dP|Ft] ≤ aEP[dQ/dP|Ft−1] for all t ∈ {1, . . . , T}}

is strongly consistent.

Proof. Indeed, by (4.3) we have

inf
Q̃∈Qa,u

EQ̃[X|Ft] ≥ inf
Q∈Qa,u

EQ[ inf
M∈Qa,u

EM[X|Ft+1]|Ft] ,

for every t ∈ {0, . . . , T − 1} and X ∈ G.

Next we will show that the converse inequality also holds true and hence, by

definition, Qa,u is strongly consistent. Towards this end, assume that t ∈ T , X ∈ G,

and a ≥ 1; all arbitrary but fixed in what follows. For convenience, we denote by

P t+1
i,j the set of partition (P t+1

1 , . . . , P t+1
nt+1

) such that P t
i = ∪ki

j=1P
t+1
i,j , i = 1, . . . , nt.

Note that k1 + k2 + · · · + knt = nt+1. Note that since Qa,u ⊂ Pe, Qa,u = efft,i(Qa,u)

for every P t
i ∈ Υt.

Pick up arbitrarily nt +nt+1 probability measures from Qa,u, and denote them

by (Q1, Q2, . . . , Qnt , M1,1, M1,2, . . . , M1,k1 , M2,1, M2,2, . . . , M2,k2 , . . . . . . , Mnt,1, Mnt,2,

. . . , Mnt,knt
). Some of them are allowed to be the same. We will construct a new

probability measure based on the above set of probabilities. For any i ∈ {1, 2, . . . , nt},

j ∈ {1, 2, . . . , ki}, and ω ∈ P t+1
i,j we put

H(ω) :=
Mi,j(ω)

Mi,j(P
t+1
i,j )

Qi(P
t+1
i,j )

Qi(P t
i )

P(P t
i ) .
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Note that P t+1
i,j , i ∈ {1, 2, . . . , nt}, j ∈ {1, 2, . . . , ki}, is a partition of Ω, and hence H

is well-defined, and since all probability measures in Q are of full support, H(ω) is

finite for all ω ∈ Ω. It is also easy to show that H(Ω) = 1, and thus H is a probability

measure.

Next we will prove that H ∈ Qa,u. On any set P t
i ∈ Υt,

EP[
dH
dP

|P t
i ] =

∑
ω∈P t

i

H(ω)

P(ω)

P(ω)

P(P t
i )

=

ki∑
j=1

∑
ω∈P t+1

i,j

H(ω)

P(ω)

P(ω)

P(P t
i )

=

ki∑
j=1

∑
ω∈P t+1

i,j

H(ω)

P(P t
i )

=

ki∑
j=1

∑
ω∈P t+1

i,j

Mi,j(ω)

Mi,j(P
t+1
i,j )

Qi(P
t+1
i,j )

Qi(P t
i )

P(P t
i )

P(P t
i )

=

ki∑
j=1

Mi,j(P
t+1
i,j )

Mi,j(P
t+1
i,j )

Qi(P
t+1
i,j )

Qi(P t
i )

P(P t
i )

P(P t
i )

=

ki∑
j=1

Qi(P
t+1
i,j )

Qi(P t
i )

= 1 .

Thus,

EP[
dH
dP

|Ft] =
nt∑
i=1

1P t
i
EP[

dH
dP

|P t
i ] =

nt∑
i=1

1P t
i

= 1 .

Hence, by tower property, for all s ≤ t,

EP[
dH
dP

|Fs] = 1 .

Consequently, we get

EP[
dH
dP

|Fs] ≤ aEP[
dH
dP

|Fs−1], for all s ≤ t . (4.6)

On the other hand, for any P t+1
i,j ∈ Υt+1,

EP[
dH
dP

|P t+1
i,j ] =

∑
ω∈P t+1

i,j

H(ω)

P(ω)

P(ω)

P(P t+1
i,j )

=
∑

ω∈P t+1
i,j

H(ω)

P(P t+1
i,j )

=
∑

ω∈P t+1
i,j

Mi,j(ω)

Mi,j(P
t+1
i,j )

Qi(P
t+1
i,j )

Qi(P t
i )

P(P t
i )

P(P t+1
i,j )

=
Mi,j(P

t+1
i,j )

Mi,j(P
t+1
i,j )

Qi(P
t+1
i,j )

Qi(P t
i )

P(P t
i )

P(P t+1
i,j )

=
Qi(P

t+1
i,j )

Qi(P t
i )

P(P t
i )

P(P t+1
i,j )

.
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Since Qi ∈ Qa,u, then

EP[
dQi

dP
|Ft+1] ≤ aEP[

dQi

dP
|Ft] ,

and thus,

EP[
dQi

dP
|P t+1

i,j ] ≤ aEP[
dQi

dP
|P t+1

i,j ] = aEP[
dQi

dP
|P t

i ] .

This implies that,
Qi(P

t+1
i,j )

P(P t+1
i,j )

≤ a
Qi(P

t
i )

P(P t
i )

.

Hence,
Qi(P

t+1
i,j )

P(P t+1
i,j )

P(P t
i )

Qi(P t
i )

≤ a ,

and therefore,

EP[
dH
dP

|P t+1
i,j ] ≤ a = aEP[

dH
dP

|P t+1
i,j ] .

Since the above holds true for any P t+1
i,j ∈ Υt+1, we have that

EP[
dH
dP

|Ft+1] ≤ aEP[
dH
dP

|Ft] .

By similar arguments as above, inductively, one can show that

EP[
dH
dP

|Fs] ≤ aEP[
dH
dP

|Ft] ,

for any s > t. Combining this with (4.6), we conclude that H ∈ Qa,u.

Next let us evaluate EH[D|Ft]. Consider a new random variable Y , defined as

follows:

Y :=
nt∑
i=1

ki∑
j=1

1P t+1
i,j

EMi,j
[D|Ft+1] .

Then, for any m ∈ {1, 2, . . . , nt}, we deduce

EQm [Y |P t
m] = EQm [

nt∑
i=1

ki∑
j=1

1P t+1
i,j

EMi,j
[D|Ft+1]|P t

m]

=
nt∑
i=1

ki∑
j=1

EQm [1P t+1
i,j

EMi,j
[D|Ft+1]|P t

m]

=
km∑
j=1

EQm [1P t+1
m,j

EMm,j
[D|Ft+1]|P t

m] . (4.7)
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For convenience, we put ct+1
m,j := EMm,j

[D|P t+1
m,j ] =

∑
ω∈P t+1

m,j

Mm,j(ω)

Mm,j(P
t+1
m,j )

D(ω). Then

EQm [Y |P t
m] =

km∑
j=1

EQm [1P t+1
m,j

EMm,j
[D|Ft+1]|P t

m]

=
km∑
j=1

EQm [1P t+1
m,j

ct+1
m,j |P t

m]

=
km∑
j=1

Qm(P t+1
m,j )

Qm(P t
m)

ct+1
m,j

=
km∑
j=1

∑
ω∈P t+1

m,j

Qm(P t+1
m,j )

Qm(P t
m)

Mm,j(ω)

Mm,j(P
t+1
m,j )

D(ω) .

From here, using the fact that H(P t
i ) = P(P t

i ), we conclude that

EQm [Y |P t
m] = EH[D|P t

m] .

Since H ∈ Qa,u, we have that EH[D|Ft] ≥ inf
Q̃∈Qa,u

EQ̃[D|Ft]. Consequently, the follow-

ing inequality holds true

EQm [Y |P t
m] ≥ inf

Q̃∈Qa,u

EQ̃[D|P t
m] .

By (4.7), it follows that

km∑
j=1

EQm [1P t+1
m,j

EMm,j
[D|Ft+1]|P t

m] ≥ inf
Q̃∈Qa,u

EQ̃[D|P t
m] .

Since the above equality holds true for all Mm,j ∈ Qa,u, by Lemma B.0.1, we have

km∑
j=1

EQm

[
1P t+1

m,j
inf

Mm,j∈Qa,u
EMm,j

[D|Ft+1]|P t
m

]
≥ 1P t

m
inf

Q̃∈Qa,u

EQ̃[D|P t
m] ,

and since, this is true for all Qm ∈ Qx,u, by Lemma B.0.1, we can conclude that

inf
Qm∈Qa,u

EQm

[ km∑
j=1

1P t+1
m,j

inf
Mm,j∈Qa,u

EMm,j
[D|Ft+1]|P t

m

]
≥ inf

Q̃∈Qa,u

EQ̃[D|P t
m] .

or equivalently,

inf
Q∈Qa,u

EQ

[
inf

M∈Qa,u
EM[D|Ft+1]|P t

m

]
≥ inf

Q̃∈Qa,u

EQ̃[D|P t
m] .

This concludes the proof that Qa,u is dynamically consistent.
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The following shows some property for Qa,u.

Proposition 4.1.3. For any Q ∈ Qa,u, we have,

EP[
dQ
dP

|Ft] ≤ at , t ∈ T .

Proof. From the definition of Qa,u, take j = 1, we have

EP[
dQ
dP

|F1] ≤ aEP[
dQ
dP

|F0]

= aEP[
dQ
dP

]

= a .

Assume EP[
dQ
dP |Ft] ≤ at holds, then

EP[
dQ
dP

|Ft+1] ≤ aEP[
dQ
dP

|Ft]

≤ aat = at+1 .

By induction, we have

EP[
dQ
dP

|Ft] ≤ at

for all t ∈ T .

Corollary 4.1.3. Using Proposition 4.1.3, we conclude that for any Q ∈ Qa,u,

Q(A) ≤ atP(A) for all t ∈ T and A ∈ Ft.

Different probabilities in Qa,u can be regarded as different opinions about the

distribution of cash-flows; the above inequality provides an upper bound of these

probabilities in terms of the underlying probability P.

Example 4.1.5. By similar arguments as in previous examples, one can show that

the set of probability measures Qa,l defined as follows

Qa,l := {Q ∈ Pe | EQ[dP/dQ | Fj] ≤ aEQ[dP/dQ | Fj−1] for all j = 1, . . . , T, }

is a strongly consistent set of probability measures.
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Analogous to Proposition 4.1.3, we can derive the following result.

Proposition 4.1.4. For any Q ∈ Qa,u, we have,

EQ[
dP
dQ

|Ft] ≤ at , t ∈ T .

Corollary 4.1.4. Using Proposition 4.1.4, we conclude that for any Q ∈ Qa,u,

Q(A) ≥ a−tP(A) for all t ∈ T and A ∈ Ft.

The above inequality provides a lower bound of these probabilities in terms of

the underlying probability P.

4.2 Representation Theorems for DCRMs and DCAIs

In this section we will present a representation theorem for dynamic coherent

risk measures in terms of dynamically consistent set of probabilities. This result

combined with the results from Section 3.4 about duality between DCAIs and DCRMs

will lead to a representation theorem for dynamic coherent acceptability indices.

Theorem 4.2.1 (Representation Theorem for DCRM). A function ρ : T ×D×Ω → R

is a dynamic coherent risk measure if and only if there exists a dynamically consistent

sequence of sets of probabilities U := {Qs}T
s=0 such that,

ρt(D) = − inf
Q∈Qt

EQ
[ T∑

s=t

Ds|Ft

]
, for all t ∈ T , D ∈ D. (4.8)

Proof. Sufficiency. Since U is dynamically consistent, it is full-support with respect

to filtration F. Definitions 4.1.3 and 4.1.4 indicate that ρ in (4.8) is well-defined for

all t ∈ T , D ∈ D and ω ∈ Ω. We will show that ρ satisfies (A1)-(A7) in Definition

3.3.1.

(A1) and (A2) directly come from (4.8) and Definition 4.1.4.
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If Ds(ω) ≥ D′
s(ω) for some t ∈ T and D, D′ ∈ D, and for all s ≥ t and ω ∈ Ω,

then fix P t
i ∈ Υt, we have

ρt(D, ω̄) = − inf
Q∈Qt

EQ
[ T∑

s=t

Ds|P t
i

]
= − inf

Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

T∑
s=t

Ds(ω)

)

≤ − inf
Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

T∑
s=t

D′
s(ω)

)

= − inf
Q∈Qt

EQ
[ T∑

s=t

D′
s|P t

i

]
= ρt(D

′, ω̄)

for all ω̄ ∈ P t
i . In general, we have ρt(D, ω) ≤ ρt(D

′, ω). (A3) holds true.

Now we show that ρ satisfies (A4). For all λ > 0, D ∈ D, t ∈ T , P t
i ∈ Υt and

ω ∈ P t
i ,

ρt(λD, ω) = − inf
Q∈Qt

EQ
[ T∑

s=t

(λD)s|P t
i

]
= − inf

Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

λ
T∑

s=t

Ds(ω)

)

= −λ inf
Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

λ
T∑

s=t

Ds(ω)

)
= λρt(D,ω) .

We show that (A5) is satisfied. For all t ∈ T , D,D′ ∈ D, P t
i ∈ Υt and ω ∈ P t

i ,

by Definition 4.1.4 and (4.8),

ρt(D + D′, ω) = − inf
Q∈Qt

EQ
[ T∑

s=t

(D + D′)s|P t
i

]
= − inf

Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

T∑
s=t

(D + D′)s(ω)

)

= − inf
Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

( T∑
s=t

Ds(ω) +
T∑

s=t

D′
s(ω)

))
.

Then, by Lemma B.0.1,

ρt(D + D′, ω)

≤− inf
Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

T∑
s=t

Ds(ω)

)
− inf

Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

T∑
s=t

D′
s(ω)

)

=ρt(D, ω) + ρt(D
′, ω) .
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We show that ρ satisfies (A6). For all t ∈ T , D ∈ D, P t
i ∈ Υt, ω̄ ∈ P t

i ,

Ft-measurable random variable m and s ≥ t, by Definition 4.1.4

ρt(D + m1{s}, ω̄) = − inf
Q∈Qt

EQ
[ T∑

l=t

(D + m1{s})l|P t
i

]
= − inf

Q∈Qt

EQ
[ T∑

l=t

Dl + m|P t
i

]
= − inf

Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

( T∑
l=t

D(ω) + m(ω)
))

.

Note that m is constant on P t
i , then

ρt(D + m1{s}, ω̄) = − inf
Q∈efft,i(Qt)

(
m(ω̄) +

∑
ω∈P t

i

Q(ω)

Q(P t
i )

T∑
l=t

Dl(ω)

)

= − inf
Q∈efft,i(Qt)

( ∑
ω∈P t

i

Q(ω)

Q(P t
i )

T∑
l=t

Dl(ω)

)
− m(ω̄) = ρt(D, ω̄) − m(ω̄) .

We will show that (A7) – dynamic consistency, is satisfied. Since U = {Qt}T
t=0

is dynamically consistent, we have,

1Aρt(D) = −1A inf
Q∈Qt

EQ
[ T∑

s=t

Ds|Ft

]
≥ 1A min

ω∈A

{
− inf

Q∈Qt+1

EQ[
T∑

s=t+1

Ds|Ft+1](ω) − Dt

}
= 1A min

ω∈A

{
ρt+1(D,ω) − Dt

}
,

for every t ∈ T , D ∈ D and Qt ∈ U .

Similarly, one can show that 1Aρt(D) ≤ 1A maxω∈A {ρt+1(D, ω) − Dt}, for

every t ∈ T , D ∈ D, Qt ∈ U . Thus (A7) is satisfied.

Necessity. The set U will be constructed explicitly. Fix a time t ∈ T . Recall that

{P t
1, . . . , P

t
nt
} denotes the partition of Ω that corresponds to Ft. Also, we will denote

by {P t,s
i,1 , . . . , P t,s

i,ms
} the partition of P t

i generated by Fs, for some future time s ≥ t.

Thus P t
i = ∪ms

j=1P
t,s
i,j . Assume that P t

i is fixed for some i ∈ {1, . . . , nt}, and define the

following probability space (Ωt
i, 2

Ωt
i , Puni) with,

Ωt
i :=

{
(s, P t,s

i,j ) : s ∈ {t, t + 1, . . . , T} and j ∈ {1, 2, . . . , ms}
}

,
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and Puni(ω) = 1/card(Ωt
i) for each ω ∈ Ωt

i.

Let us denote by X (Ωt
i) the set of all random variables on Ωt

i. There exists

a one-to-one correspondence between X (Ωt
i) and the set Dt

i := {D1{t,t+1,...,T}1P t
i

:

for all D ∈ D}. The map can be defined as follows: for any X ∈ X (Ωt
i), put

DX
s (ω) :=


X((s, P t,s

i,j )), if s ≥ t and ω ∈ P t,s
i,j

0, otherwise ,

(4.9)

and vice versa, for any D ∈ Dt
i , define

XD((s, P t,s
i,j )) := Ds(ω), (4.10)

for s ≥ t, j ∈ {1, 2, . . . ,ms}, and ω ∈ P t,s
i,j .

Consider the following function ϕ : X (Ωt
i) → R with,

ϕ(X) :=
1

T − t + 1
ρt(D

X , ω), ω ∈ P t
i . (4.11)

We claim that ϕ is a static coherent risk measure, i.e. satisfies the properties (R1)-

(R4) of Definition 2.1.2. Indeed, for any X, Y ∈ X (Ωt
i), such that X ≤ Y , we have,

DX
s (ω) ≤ DY

s (ω), for all s ≥ t and ω ∈ Ω. Then, by (A3), the monotonicity of ρ,

we get ρt(D
X , ω) ≥ ρt(D

Y , ω), for ω ∈ Ω. Therefore, by (4.11), ϕ(X) ≥ ϕ(Y ), i.e. ϕ

satisfies (R1).

Note that for all X ∈ X (Ωt
i) and λ ≥ 0, by (4.9), we have,

DλX
s (ω) = λX((s, P t,s

i,j )) = λDX
s (ω) ,

for all s ≥ t and ω ∈ P t,s
i,j . From here, by (4.11) and using homogeneity of ρ, the

homogeneity (R2) of ϕ follows.

Next we will show that ϕ satisfies (R3). For all X ∈ X (Ωt
i) and k ∈ R, by

(4.9), we have,

DX+k
s (ω) = X((s, P t,s

i,j )) + k = DX
s (ω) + k ,
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for all s ≥ t and ω ∈ P t,s
i,j . Therefore, by (4.11) and (A6), translation invariance of ρ,

we deduce

ϕ(X + k) =
1

T − t + 1
ρt(D

X+k, ω) =
1

T − t + 1
ρt(D

X + k1{t,...,T}, ω)

=
1

T − t + 1
(ρt(D

X , ω) − (T − t + 1)k) =
1

T − t + 1
ρt(D

X , ω) − k

= ϕ(XD) − k ,

for all X ∈ X (Ωt
i).

To show that ϕ satisfies (R4), consider an X ∈ X (Ωt
i). By (4.9)

DX+Y
s (ω) = X((s, P t,s

i,j )) + Y ((s, P t,s
i,j )) = DX

s (ω) + DY
s (ω) ,

for all s ≥ t and ω ∈ P t,s
i,j , and therefore, by (4.11) and (A5), subadditivity of ρ, we

obtain

ϕ(X + Y ) =
1

T − t + 1
ρt(D

X + DY , ω)

≤ 1

T − t + 1
ρt(D

X , ω) +
1

T − t + 1
ρt(D

Y , ω)

= ϕ(X) + ϕ(Y ) .

From all the above, we conclude that ϕ is a static coherent risk measure. By

Theorem 2.2.1, representation of static coherent risk measures, there exists Mt
i, a set

of absolutely continuous probability measures with respect to Puni on Ωt
i, such that

ϕ(X) = − inf
M∈Mt

i

EM[X] .

By (4.11), we have,

1

T − t + 1
ρt(D

X , ω) = − inf
M∈Mt

i

EM[X] , ω ∈ P t
i . (4.12)

Since there is one-to-one map between X (Ωt
i) and Dt

i , for any D ∈ Dt
i , we also can

write

1

T − t + 1
ρt(D, ω) = − inf

M∈Mt
i

EM[XD] . (4.13)
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Fix a time t0 ∈ {t, t + 1, . . . , T}, and denote by D̃ the process 1{t0}. By

(A6)-translation invariance and (A2)-independence of the past of ρ, it follows that

ρt(D̃, ω) = −1, ω ∈ P t
i . Hence, by (4.13),

inf
M∈Mt

i

EM[XD̃] =
1

T − t + 1
. (4.14)

Note that EM[XD̃] = M({t0} × P t
i ). Thus, (4.14) implies

inf
M∈Mt

i

M({t0} × P t
i ) =

1

T − t + 1
.

Similarly, one can show that EM[X−D̃] = −M({t0} × P t
i ). Thus we derive that

inf
M∈Mt

i

EM[X−D̃] = inf
M∈Mt

i

(−M({t0} × P t
i )) = − sup

M∈Mt
i

M({t0} × P t
i ) ,

and consequently

sup
M∈Mt

i

M({t0} × P t
i ) =

1

T − t + 1
.

This yields that

M({t0} × P t
i ) =

1

T − t + 1
, t0 ∈ {t, t + 1, . . . , T}. (4.15)

For any s ∈ {t, t + 1, . . . , T}, define Ms : Ωt
i → R as follows

Ms((r, P t,r
i,j )) :=


(T − t + 1)M((r, P t,r

i,j )), when r = s and j ∈ {1, 2, . . . , mr}

0, otherwise.

It is straightforward to show that Ms is a probability measure on Ωt
i for every s ∈

{t, t + 1, . . . , T}.

For all D ∈ D, we can derive,
T∑

s=t

EMs [XDs1s ] =
T∑

s=t

( T∑
r=t

mr∑
j=1

Ms((r, P t,r
i,j ))(Ds1s)r(ω)

)
, for some ω ∈ P t,r

i,j

=
T∑

s=t

( mr∑
j=1

Ms((s, P t,s
i,j ))Ds(ω)

)
, for some ω ∈ P t,r

i,j

=
T∑

s=t

( mr∑
j=1

(T − t + 1)M((s, P t,s
i,j ))Ds(ω)

)
, for some ω ∈ P t,r

i,j

= (T − t + 1)EM[XD] .
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Hence, by (4.13), we have

ρt(D, ω) = −(T − t + 1) inf
M∈Mt

i

EM[XD] = − inf
M∈Mt

i

T∑
s=t

EMs [XDs1s ], ω ∈ P t
i . (4.16)

Since ρ satisfies (A6) and (A7), we deduce that

ρs(Ds1{s} − Ds1{T}, ω) = 0 , s ≥ t, D ∈ D, ω ∈ P t
i .

Thus, (4.13) and (4.16) imply,

− inf
M∈Mt

i

(
EMs [XDs1{s} ] − EMT [XDs1{T} ]

)
= − inf

M∈Mt
i

[
T∑

r=t

EMr [X(Ds1{s}−Ds1{T})r1r ]

]

=ρt(Ds1{s} − Ds1{T}, ω) = 0 .

Since the above equality holds true for all D ∈ D, it also holds true for −D. Hence,

we have

inf
M∈Mt

i

(EMs [X−Ds1{s} ] − EMT [X−Ds1{T} ]) = 0 . (4.17)

On the other hand, by (4.10), one gets

inf
M∈Mt

i

(EMs [X−Ds1{s} ] − EMT [X−Ds1{T} ]) = − sup
M∈Mt

i

(EMs [XDs1{s} ] − EMT [XDs1{T} ]) .

Thus,

sup
M∈Mt

i

(EMs [XDs1{s} ] − EMT [XDs1{T} ]) = 0 (4.18)

By (4.17) and (4.18) we conclude that

sup
M∈Mt

i

(EMs [XDs1{s} ] − EMT [XDs1{T} ]) = 0 = inf
M∈Mt

i

(EMs [XDs1{s} ] − EMT [XDs1{T} ]) ,

and hence

EMs [XDs1{s} ] = EMT [XDs1{T} ] . (4.19)

for all s ≥ t, and M ∈ Mt
i. Therefore, we can rewrite (4.16) as follows,

ρt(D,ω) = − inf
M∈Mt

i

[ T∑
s=t

EMs [XDs1{s} ]
]

= − inf
M∈Mt

i

[
EMT [

T∑
s=t

XDs1{T} ]
]

= − inf
M∈Mt

i

EMT

[
X(

∑T
s=t Ds)1{T}

]
. (4.20)
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for all D ∈ D, and ω ∈ P t
i .

To summarize, for every P t
i , i = 1, . . . , nt, we constructed a set of probability

measures Mt
i on Ωt

i. Having these sets, we define Qt as follows:

Qt :=

{
Q ∈ P : there exists {Mi}nt

i=1 such that, ∀ i ∈ {1, . . . , nt}, j ∈ {1, . . . , mi
T},

Mi ∈ Mt
i and Q(ω) =

1

nt

1

N (P t,T
i,j )

MT
i ((T, P t,T

i,j )) for all ω ∈ P t,T
i,j

}
,

where N (P ) stands for cardinality of the set P ⊂ Ω.

By direct evaluations, one can show that Qt, t ∈ T , is a set of probability

measure on Ω. In addition, one can show that for all t ∈ T , P t
i ∈ Υt and Q ∈ Qt,

Qt(P
t
i ) = 1

nt
. Hence, by Definition 4.1.3, the sequence of sets of probability measures

{Qt}T
t=0 is full-support with respect to filtration F.

Next we will show that (4.8) is fulfilled. Note that,

EQ
[ T∑

s=t

Ds|P t
i

]
=

∑
ω∈P t

i

[ T∑
s=t

Ds(ω)
Q(ω)

Q(P t
i )

]

=

mi
T∑

j=1

∑
ω∈P t,T

i,j

[ T∑
s=t

Ds(ω)
1

N (P t,T
i,j )

MT
i ((T, P t,T

i,j ))

]

=

mi
T∑

j=1

[ T∑
s=t

Ds(ω)MT
i ((T, P t,T

i,j ))
]

= EMT
i
[X

∑T
s=t Ds1{T} ] .

If infQ∈Qt EQ
[∑T

s=t Ds|P t
i

]
> infMi∈Mt

i
EMT

i
[X

∑T
s=t Ds1{T} ], then there exists M̃i ∈ Mt

i

such that

EM̃T
i
[X

∑T
s=t Ds1{T} ] < inf

Q∈Qt

EQ
[ T∑

s=t

Ds|Ft

]
(ω) . (4.21)

However, for Q̃ constructed by M̃i, as previously proved,

EM̃T
i
[X

∑T
s=t Ds1{T} ] = EQ̃

[ T∑
s=t

Ds|P t
i

]
≥ inf

Q∈Qt

EQ
[ T∑

s=t

Ds|P t
i

]
,
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that contradicts (4.21). On the other hand, if

inf
Q∈Qt

EQ
[ T∑

s=t

Ds|P t
i

]
< inf

Mi∈Mt
i

EMT
i
[X

∑T
s=t Ds1{T} ] ,

then there exists Q̃ ∈ Qt such that

inf
Mi∈Mt

i

EMT
i
[X

∑T
s=t Ds1{T} ] > EQ̃

[ T∑
s=t

Ds|P t
i

]
. (4.22)

As previously proved, there exists M̃i ∈ Mt
i, such that

EQ̃
[ T∑

s=t

Ds|P t
i

]
= EM̃T

i
[X

∑T
s=t Ds1{T} ] ≥ inf

Mi∈Mt
i

EMT
i
[X

∑T
s=t Ds1{T} ] ,

which contradicts (4.22). Thus, we conclude that

inf
Q∈Qt

EQ
[ T∑

s=t

Ds|P t
i

]
= inf

Mi∈Mt
i

EMT
i
[X

∑T
s=t Ds1{T} ] ,

and by (4.20),

ρt(D) = − inf
Q∈Qt

EQ
[ T∑

s=t

Ds|Ft

]
.

To complete the proof we need to show that {Qs}T
s=0 is a dynamically consis-

tent sequence of sets of probability measures. Recall that by (A7), dynamic consis-

tency of ρ,

1A(min
ω∈A

ρt+1(D, ω) − Dt) ≤ 1Aρt(D) ≤ 1A(max
ω∈A

ρt+1(D, ω) − Dt) , (4.23)

for all D ∈ D and A ∈ Ft. Using this, we get

1A(min
ω∈A

{
− inf

Q∈Qt+1

EQ
[ T∑

s=t+1

Ds|Ft+1

]
(ω)

}
− Dt) ≤ 1A(− inf

Q∈Qt

EQ
[ T∑

s=t

Ds|Ft

]
) ,

for any D ∈ D and A ∈ Ft. Consequently, we obtain

1A max
ω∈A

{
inf

Q∈Qt+1

EQ
[ T∑

s=t

Ds|Ft+1

]
(ω)

}
≥ 1A inf

Q∈Qt

EQ
[ T∑

s=t

Ds|Ft

]
, D ∈ D, A ∈ Ft.

(4.24)
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Similarly, by (4.23)

1A(max
ω∈A

{
− inf

Q∈Qt+1

EQ
[ T∑

s=t+1

Ds|Ft+1

]
(ω)

}
− Dt) ≥ 1A(− inf

Q∈Qt

EQ
[ T∑

s=t

Ds|Ft

]
)

and hence

1A min
ω∈A

{
inf

Q∈Qt+1

EQ
[ T∑

s=t

Ds|Ft+1

]
(ω)

}
≤ 1A inf

Q∈Qt

EQ
[ T∑

s=t

Ds|Ft

]
, D ∈ D, A ∈ Ft.

(4.25)

Combining (4.24) and (4.25) dynamic consistency of {Qt}T
t=0 follows.

Recall that in Chapter 2 we discussed that any set of probability measures and

its closed convex hull generate the same risk measure. We will extend it to dynamic

framework.

Proposition 4.2.1. Let Q be a subset of P with efft,i(Q) ̸= ∅ for some P t
i ∈ Υt.

Denote the closed convex hull of Q by Q̄C. We have

inf
Q∈Q

EQ[X|P t
i ] = inf

Q∈Q̄C
EQ[X|P t

i ] ,

for all X ∈ G.

Proof. By Definition 4.1.4, it is enough to show that for all X ∈ G,

inf
Q∈efft,i(Q)

EQ[X|P t
i ] = inf

Q∈efft,i(Q̄C)
EQ[X|P t

i ] .

First, note that efft,i(Q) ⊂ efft,i(Q̄C), thus

inf
Q∈efft,i(Q)

EQ[X|P t
i ] ≥ inf

Q∈efft,i(Q̄C)
EQ[X|P t

i ] . (4.26)

We will verify the other way in two steps. Denote by QC as the convex hull

of Q. For any Q0 ∈ efft,i(QC), by the Definition 2.2.2 of convex hull, there exists

{Q1, Q2, · · · , Qk} ∈ Q such that Q0 =
∑k

l=1 λlQl with λi > 0 and
∑k

l=1 λl = 1.
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Since Q0(P
t
i ) > 0, then there exists at least one Qj where j = 1, · · · , k such that

Qj(P
t
i ) > 0.

EQ0 [X|P t
i ] =

∑
ω∈P t

i

Q0(ω)X(ω)

Q0(P t
i )

=
∑
ω∈P t

i

∑k
l=1 λlQl(ω)X(ω)∑k

l=1 λlQl(P t
i )

=
∑
ω∈P t

i

∑
Qj(P t

i )>0

λlQl(ω)X(ω)∑
Qj(P t

i )>0

λlQl(P t
i )

=

∑
Qj(P t

i )>0

λl

( ∑
ω∈P t

i
Ql(ω)X(ω)

)
∑

Qj(P t
i )>0

λlQl(P t
i )

(4.27)

Define a constant a := inf
Q∈efft,i(Q)

EQ[X|P t
i ]. By Definition 4.1.4, for all Qj with

Qj(P
t
i ) > 0, we have

EQj
[X|P t

i ] =

∑
ω∈P t

i
Qj(ω)X(ω)

Qj(P t
i )

≥ a .

Thus,
∑

ω∈P t
i
Qj(ω)X(ω) ≥ aQj(P

t
i ). By (4.27), we can derive

EQ0 [X|P t
i ] =

∑
Qj(P t

i )>0

λl

( ∑
ω∈P t

i
Ql(ω)X(ω)

)
∑

Qj(P t
i )>0

λlQl(P t
i )

≥

∑
Qj(P t

i )>0

λl

(
aQl(P

t
i )

)
∑

Qj(P t
i )>0

λlQl(P t
i )

= a

∑
Qj(P t

i )>0

λlQl(P
t
i )∑

Qj(P t
i )>0

λlQl(P t
i )

= a .

We verified that for all Q0 ∈ efft,i(QC),

EQ0 [X|P t
i ] ≥ inf

Q∈efft,i(Q)
EQ[X|P t

i ] .

Then, by Lemma B.0.1, we can conclude

inf
Q∈efft,i(QC)

EQ0 [X|P t
i ] ≥ inf

Q∈efft,i(Q)
EQ[X|P t

i ] . (4.28)
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Next step, note that Q̄C is the closure of QC , then for any Q0 ∈ efft,i(Q̄C), since

Q0(P
t
i ) > 0, there exists a sequence (Q1, Q2, · · · ) with each Qn ∈ efft,i(QC) such that

lim
l→∞

Ql = Q0 .

Since we are in finite probability space, the above limit is state-wise. Hence, by the

linearity of expectation and finiteness of space,

EQ0 [X|P t
i ](ω̄) =

∑
ω∈P t

i

Q0(ω)X(ω)

Q0(P t
i )

= lim
l→∞

∑
ω∈P t

i

Ql(ω)X(ω)

Ql(P t
i )

= lim
l→∞

EQl
[X|P t

i ] .

Thus, it implies

EQ0 [X|P t
i ] ≥ inf

Q∈efft,i(QC)
EQ[X|P t

i ] .

We verified that for all Q0 ∈ efft,i(Q̄C),

EQ0 [X|P t
i ] ≥ inf

Q∈Q
EQ[X|P t

i ] .

Then, by Lemma B.0.1, we can conclude

inf
Q∈efft,i(Q̄C)

EQ0 [X|P t
i ] ≥ inf

Q∈efft,i(QC)
EQ[X|P t

i ] .

Together with (4.28), we get

inf
Q∈efft,i(Q̄C)

EQ[X](ω̄) ≥ inf
Q∈efft,i(Q)

EQ[X](ω̄) .

Together with (4.26), we conclude that, for any X ∈ G,

inf
Q∈efft,i(Q̄C)

EQ[X](ω̄) = inf
Q∈efft,i(Q)

EQ[X](ω̄) .

Corollary 4.2.1. Using Proposition 4.2.1, we can conclude that
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(1) If an individual set of probability measures is strongly consistent, its closed con-

vex hull is also strongly consistent.

(2) If an individual set of probability measures is weakly consistent, its closed convex

hull is also weakly consistent.

(3) If a sequence of sets of probability measures is dynamically consistent, after

taking closed convex hull for each individual set, the new sequence is also dy-

namically consistent.

Together with the Representation Theorem 4.2.1 for DCRMs, we can conclude

the following corollary.

Corollary 4.2.2. A dynamically consistent sequence of sets of probability measures

and its closed convex hull sequence generate the same dynamic coherent risk measure.

Having derived a representation theorem for dynamic coherent risk measures in

terms of dynamically consistent sequence of sets of probability measures, and having

derived the duality between DCRMs and DCAIs, we can present another important

result: representation theorem for DCAIs in terms of dynamically consistent sequence

of sets of probability measures.

We shall mention that Proposition 4.2.1 and Hyperplane Separation Theo-

rem B.0.2 are indispensable technical results to prove the representation theorem for

DCAIs.

Definition 4.2.1. Let Q be an absolutely continuous probability measure with respect

to reference P with Q(P t
i ) > 0 for some P t

i ∈ Υt. The conditional probability measure

condt,i(Q) is defined as follows:

condt,i(Q)(ω) :=
Q(ω)

Q(P t
i )

,

for all ω ∈ P t
i .
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It is not hard to observe that condt,i(Q) indeed is a probability on P t
i .

Definition 4.2.2. Let Q be a subset of P. The set of conditional probabilities

condt,i(Q) is defined as follows:

condt,i(Q) := {condt,i(Q), ∀ Q ∈ Q with Q(P t
i ) > 0} ,

for all t ∈ T and P t
i ∈ Υt.

Lemma 4.2.1. If Q ⊂ P is full-support, closed and convex, then condt,i(Q) is closed

and convex for all t ∈ T and P t
i ∈ Υt.

Proof. Since Q is full-support, then every condt,i(Q) is nonempty set. For any

condt,i(Q) ∈ condt,i(Q), by Definition 4.2.2, we have Q(P t
i ) > 0. Since Q is closed,

there is a sequence (Q1, Q2, · · · ) with each Qn ∈ Q such that

lim
l→∞

Ql = Q0 .

Since we are in finite probability space, the above limit is state-wise. There exists

a subsequence of (Q1, Q2, · · · ) which can be assumed to be the sequence itself, such

that Qj(P
t
i ) > 0 for all j = 1, 2, · · · . Then,

lim
l→∞

condt,i(Ql) = condt,i(Q0) .

So, condt,i(Q) is closed.

Since Q is convex, there exists Q1, Q2, · · · , Qk such that Q0 =
∑k

l=1 λlQl with

λi ≥ 0 and
∑k

l=1 λl = 1. Since Q0(P
t
i ) > 0, then there exists at least one Qj where

j = 1, · · · , k such that Qj(P
t
i ) > 0. We pick up all Qj1 , Qj2 , · · · , Qju such that all of
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them are not zero when measuring P t
i . Then, for all ω ∈ P t

i , we have

condt,i(Q0)(ω) =
Q0(ω)

Q0(P t
i )

=

∑u
l=1 λjl

Qjl
(ω)

Q0(P t
i )

=

∑u
l=1 λjl

Qjl
(ω)

Q0(P t
i )

=
u∑

l=1

λjl
Qjl

(P t
i )

Q0(P t
i )

Qjl
(ω)

Qjl
(P t

i )

=
u∑

l=1

λjl
Qjl

(P t
i )

Q0(P t
i )

condt,i(Qjl
)(ω)

Note that
λjl

Qjl
(P t

i )

Q0(P t
i )

≥ 0 and
∑u

l=1

λjl
Qjl

(P t
i )

Q0(P t
i )

=
∑u

l=1 λjl
Qjl

(P t
i )

Q0(P t
i )

=
Q0(P t

i )

Q0(P t
i )

= 1. Hence,

condt,i(Q) is convex.

Definition 4.2.3. A family of sequences of sets of probability measures (Ux :=

(Qx
t )

T
t=0)x∈(0,+∞) is called increasing if condt,i(Qx

t ) ⊇ condt,i(Qy
t ), for all x ≥ y > 0,

t ∈ T and P t
i .

Before we present the representation theorem for DCAIs, we shall discuss a

technical result as follows. It will be used for representation theorem of ADCAIs in

the following chapter as well. It is worth to mention that Hyperplane Separation

Theorem B.0.2 is used to verify the lemma.

Lemma 4.2.2. Given a finite probability space (Ω, P) with full support. Let N denotes

the number of states in Ω, and P denotes the set of all probability measures absolutely

continuous with respect to P. For any two closed and convex subsets U1 ⊆ P and

U2 ⊆ P, if

max
P∈U1

EP[X] ≥ max
P∈U2

EP[X] ,

for all random variables X. Then, we have U2 ⊆ U1.
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Proof. First, we can think of U1 and U2 are two closed and convex subsets of the

N -dimensional space RN .

Assume there exists a point (probability measure) Q0 in RN such that Q0 ∈ U2

but Q0 ∋ U1. Singleton {Q0} is a closed and convex set. Since {Q0} and U1 are

disjoint, by the Separating Hyperplane Theorem B.0.2, there exists a point p such

that

inf
x∈{Q0}

p · x > sup
y∈U1

p · y . (4.29)

We can define a random variable X0(ω) := p(ω) for all ω ∈ Ω with ω is the corre-

sponding dimension in RN . Then, we can rewrite (4.29) as follows:

inf
Q∈{Q0}

EQ[X0] > sup
Q∈U1

EQ[X0] .

Since U1 is closed and {Q0} is singleton, we have

EQ0 [X0] > max
Q∈U1

EQ[X0] .

Note that Q0 ∈ U2. Hence,

max
P∈U2

EP[X0] ≥ EQ0 [X0] > max
P∈U1

EP[X0] .

which contradicts the assumption maxP∈U1 EP[X] ≥ maxP∈U2 EP[X]. Finally, we have

U2 ⊆ U1.

Theorem 4.2.2. α is a normalized and right-continuous DCAI if and only if there

exists an increasing family of dynamically consistent sequences of sets of probability

measures (Ux := (Qx
t )

T
t=0)x∈(0,+∞) such that

αt(D) = sup{x ∈ (0, +∞) : inf
Q∈Qx

t

EQ
[ T∑

s=t

Ds|Ft

]
≥ 0} , t ∈ T , D ∈ D. (4.30)

Proof. Sufficiency. Given an increasing family of dynamically consistent sequences

of sets of probability measures (Ux := (Qx
t )

T
t=0)x∈(0,+∞) such that, for all t ∈ T and
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D ∈ D,

αt(D) = sup{x ∈ (0, +∞) : inf
Q∈Qx

t

EQ
[ T∑

s=t

Ds|Ft

]
≥ 0} .

Let us define ρx such that

ρx
t (D) := − inf

Q∈Qx
t

EQ
[ T∑

s=t

Ds|Ft

]
.

By the Representation Theorem 4.2.1 of DCRMs, each ρx is a DCRM. By Definition

4.1.4 and Definition 4.2.2, for ω ∈ P t
i ,

ρx
t (D,ω) = − inf

Q∈Qx
t

EQ
[ T∑

s=t

Ds|Ft

]
(ω)

= − inf
Q∈condt,i(Qx

t )
EQ

[ T∑
s=t

Ds

]
.

Since Ux is increasing, for y1 > y2 > 0, we have condt,i(Qy1
t ) ⊃ condt,i(Qy2

t ). Then,

for all ω ∈ P t
i ,

ρy1
t (D, ω) = − inf

Q∈condt,i(Qy1
t )

EQ
[ T∑

s=t

Ds

]
≥= − inf

Q∈condt,i(Qy2
t )

EQ
[ T∑

s=t

Ds

]
= ρy2(D, ω)

Note that the above inequality holds true for all P t
i . We know that ρx is increasing

with respect x. Therefore, we can rewrite α as,

αt(D) = sup{x ∈ (0, +∞) : ρx
t (D) ≤ 0} .

By the Theorem 3.4.2, we know that α is a right-continuous and normalized dynamic

coherent acceptability index.

Necessity. Since α is a normalized and right-continuous dynamic coherent

acceptability index, by the Theorem 3.4.3, we have, there exists an increasing and

left-continuous family of DCRM (ρx)x∈(0,+∞) such that

αt(D) = sup{x ∈ (0, +∞) : ρx
t (D) ≤ 0} .

By the Representation Theorem 4.2.1, for each ρx, there exists a dynamically consis-

tent sequence of sets of probability measures Ux := {Qx
s}T

s=0 such that

ρx
t (D) = − inf

Q∈Qx
t

EQ[
T∑

s=t

Ds|Ft] ,
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which implies,

αt(D) = sup{x ∈ (0, +∞) : inf
Q∈Qx

t

EQ
[ T∑

s=t

Ds|Ft

]
≥ 0} .

Denote Ūx := {Q̄x
s}T

s=0 as the closed convex hull of Ux with Q̄x
s is the closed convex

hull of Qx
s for every s = 0, 1, · · · , T . Proposition 4.2.1 shows that

ρx
t (D) = − inf

Q∈Qx
t

EQ[
T∑

s=t

Ds|Ft] = − inf
Q∈Q̄x

t

EQ[
T∑

s=t

Ds|Ft] .

Note that the above equality holds true for all D ∈ D and t ∈ T . By Definition 4.1.4

and Definition 4.2.2,

ρx
t (D) = − inf

Q∈condt,i(Q̄x
t )

EQ[
T∑

s=t

Ds] .

Since Q̄x
t is full-support, closed and convex, Lemma 4.2.1 implies that condt,i(Q̄x

t ) is

also closed and convex. Then, Lemma 4.2.2 showes that condt,i(Q̄x
t ) ⊃ condt,i(Q̄y

t ) if

x > y for all t ∈ T .

The above argument holds true for all P t
i ∈ Υt. We know that (Ux :=

(Qx
t )

T
t=0)x∈(0,+∞) is increasing with respect to x.

Theorem 4.2.2, besides being a fundamental theoretical result, can serve as

basis for construction of DCAIs by means of constructing increasing sequences of

dynamic sets of probability measures. Using this idea, we present here two abstract,

non-trivial, examples of DCAIs.

Example 4.2.1. Dynamic upper-limit ratio.

Assume that h : (0, +∞) → [0, +∞) is an increasing function. Define Q́x as follows,

Q́x := {Q ∈ Pe|EP[
dQ
dP

|Fj] ≤ (1 + h(x))EP[
dQ
dP

|Fj−1] for all j = 1, . . . , T, } ,

and let Ux := {Q́x}T
t=0. Note that Q́x = Q1+h(x),u, x ≥ 0, where Qa,u, a ≥ 1, is

defined in Example 4.1.4, and thus Q́x is dynamically consistent for any x > 0. Also
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observe that monotonicity of h implies monotonicity of Q́x with respect to x. Hence,

by Theorem 4.2.2,

αt(D) = sup{x ∈ (0, +∞) : inf
Q∈Q́x

EQ
[ T∑

s=t

Ds|Ft

]
≥ 0} .

is a normalized and right-continuous dynamic coherent acceptability index. We call

it dynamic upper-limit ratio.

Example 4.2.2. Dynamic lower-limit ratio.

Similarly, using Example 4.1.5, we consider Q̀x := Q1+h(x),l, for some increasing, non-

negative function h. Then, Ux := {Q̀x}T
t=0 is dynamically consistent, and by Theorem

4.2.2, the function α defined by (4.30) with Qx
t = Q̀x, x > 0, is a normalized and

right-continuous dynamic coherent acceptability index. We call it dynamic lower-limit

ratio.

Proposition 4.2.2. Static AI is a particular case of the DCAI and corresponds to

T = 1. Same is true for the representation theorem for static AI in terms of family

of sets of probability measures.

Proof. (i) Assume Fatou Property holds, we are going to prove that right-continuity

holds. In fact, if right-continuity doesn’t hold, by the monotonicity of CAI, there

exists x ∈ [0, +∞) such that

lim
c→0+

αt(D + c1{t}1Ω, ω) > x > αt(D,ω) .

However, by Fatou Property, since D + c1{t}1Ω → D, we should have αt(D, ω) ≥ x,

which contradicts the above inequality. Therefore, right-continuity holds.

(ii) Assume right-continuity holds, we are going to prove that Fatou Property

holds. We will define X ′
n(ω) := |Xn(ω) − X(ω)| + X(ω). Hence, we have X ′

n ≥ Xn.
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By the monotonicity, we have

α(X ′
n) ≥ α(Xn) ≥ x .

Denote cn = maxω∈Ω{X ′
n(ω) − X(ω)}, we know cn ≥ 0. Because of finite space, we

can prove that limn→∞ cn = 0. By the monotonicity, we have

α(X + cn) ≥ α(X ′
n) ≥ x .

By the right-continuity, we have

α(X) = lim
n→∞

α(X + cn) ≥ x .

Therefore, Fatou Property holds.
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CHAPTER 5

ALTERNATIVE DYNAMIC COHERENT ACCEPTABILITY INDICES

Many researchers have contributed to the theory of DCRMs. The major differ-

ence among them is the dynamic consistency. In this chapter, we use DCRMs defined

in Appendix A. It provides us an alternative platform to study DCAIs. In fact, this is

the first result we got by studying DCAIs. We differentiate it from DCAIs established

in previous chapters, by naming it alternative dynamic coherent acceptability indices

(ADCAIs).

We assume the same mathematical setup and notations in Section 3.1. In

particular, we stress that Υt := {P t
1, P

t
2, . . . , P

t
nt
} denotes the unique partition of Ω

at time t that generates Ft.

Definition 5.0.4. A basic dynamic acceptability index is a function

α : T × D × Ω → [0, +∞] that satisfies the following set of properties:

(O1) Adaptiveness. For any t ∈ T and D ∈ D, αt(D) is Ft-measurable;

(O2) Independence of the past. For any t ∈ T and D, D′ ∈ D, if there exists

A ∈ Ft such that 1ADs = 1AD′
s for all s ≥ t, then 1Aαt(D) = 1Aαt(D

′);

(O3) Strict monotonicity.

(O3.1) For any t ∈ T and D, D′ ∈ D, if Ds(ω) ≥ D′
s(ω) for all s ≥ t and

ω ∈ Ω, then αt(D, ω) ≥ αt(D
′, ω) for all ω ∈ Ω;

(O3.2) If αt(D, ω) ∈ (0, +∞) for some t ∈ T , D ∈ D and ω ∈ Ω, then

αt(D + c1{t}, ω) > αt(D, ω) for every strictly positive constant c ∈ R;

(O4) Arbitrage consistency. αt(1{s}) = +∞ for all t ∈ T and s ≥ t;

(O5) Relevancy. For all t ∈ T , P t
i ∈ Υt, ω, ω̄ ∈ P t

i and s ≥ t, we have

αt(−1{s}1{ω̄}, ω) = 0;



85

(O6) Scale invariance. αt(λD, ω) = αt(D, ω) for all λ > 0, D ∈ D, t ∈ T , and

ω ∈ Ω;

(O7) Translation invariance. αt(D+m1{t}, ω) = αt(D+m1{s}, ω) for every t ∈ T ,

D ∈ D, ω ∈ Ω, s ≥ t and every Ft-measurable random variable m;

(O8) Right continuity. lim
c→0+

αt(D + c1{t}, ω) = αt(D,ω) for all t ∈ T , D ∈ D, and

ω ∈ Ω.

(O1) and (O2) are the same as (D1) and (D2), which are the natural properties

in dynamic framework. (O3) is stronger than (D3) since it has a strict inequality

when positive cash is added into a portfolio, as in (O3.2). Arbitrage consistency

(O4) indicates that ‘an arbitrage’ is +∞ index level and hence the basic dynamic

acceptability index is unbounded above. Relevancy (O5) implies that a possible loss

portfolio has 0 index level. Combined with (O3), a negative portfolio has 0 index

level as well. (O6) and (O7) are the same as (D4) and (D6). For technical reasons,

we use (O8) to describe the right-continuity of ADCAIs.

Definition 5.0.5. For any basic dynamic acceptability index α, the x-level set of

positions with respect to P t
i ∈ Υt, is defined by

Dt,i
x := {D ∈ D |αt(D,ω) ≥ x, for all ω ∈ P t

i } , (5.1)

where x ∈ [0, +∞].

We observe that all strictly positive positions are belonging to Dt,i
x for any

x ∈ [0, +∞]. By the Definition 5.0.4, Dt,i
0 = D, for all P t

i ∈ Υt. Note that (O1) –

adaptiveness indicates that αt(D) is a constant on each P t
i .

Definition 5.0.6. For any basic dynamic acceptability index α, D ∈ D and x ∈

(0, +∞], the x-level minimum cash payment with respect to P t
i ∈ Υt, is defined by

mcD,x,t,i := inf{c ∈ R : D + c1{t} ∈ Dt,i
x } . (5.2)
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For any D ∈ D, since D is a bounded process, there exists a positive number

kD ∈ R such that |D| < kD. Therefore,

{c ∈ R : D + c1{t} ∈ Dt,i
x } ⊆ (−(T + 1)kD, (T + 1)kD) ,

and then −(T + 1)kD ≤ mcD,x,t,i ≤ (T + 1)kD, which means mcD,x,t is finite and

well-defined.

Definition 5.0.7. For any basic dynamic acceptability index α, D ∈ D and x ∈

(0, +∞], the x-level minimum cash payment at time t, is defined as follows:

MCD,x,t(ω) := mcD,x,t,i , if ω ∈ P t
i , (5.3)

for all ω ∈ Ω.

We can observe that MCD,x,t is constant on each P t
i and therefore is a Ft-

measurable random variable.

Lemma 5.0.3. Given a basic dynamic acceptability index α, D ∈ D, x ∈ (0, +∞)

and P t
i ∈ Υt, mcD,x,t,i is the x-level minimum cash payment with respect to P t

i ∈ Υt

if and only if for all ω ∈ P t
i and η > 0,

αt(D + mcD,x,t,i1t, ω) ≥ x and αt(D + mcD,x,t,i1t − η1t, ω) < x .

Proof. Necessity. If mcD,x,t,i is the x-level minimum cash payment with respect to

P t
i ∈ Υt, by (5.1) and (5.2), for all ω ∈ P t

i and η > 0,

αt(D + mcD,x,t,i1t − η1t, ω) < x .

If there exists a ω̄ ∈ P t
i , such that αt(D + mcD,x,t,i1t, ω̄) < x. Then, there exists a

positive ϵ̄ > 0 such that αt(D + mcD,x,t,i1t, ω̄) = x − ϵ̄. By (O8) – right continuity of

α, there exists γ̄ > 0 such that

αt(D + mcD,x,t,i1t + γ̄1t, ω̄) − αt(D + mcD,x,t,i1t, ω̄) ≤ ϵ̄

2
.
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Then

αt(D + mcD,x,t,i1t + γ̄1t, ω̄) ≤ αt(D + mcD,x,t,i1t, ω̄) +
ϵ̄

2

= x − ϵ̄ +
ϵ̄

2
= x − ϵ̄

2
< x .

Since αt(D) is a constant on each P t
i , by (O3) – strict monotonicity and the above

inequality,

mcD,x,t,i = inf{c ∈ R : D + c1{t} ∈ Dt,i
x }

= inf{c ∈ R : αt(D + c1t, ω̄) ≥ x, }

≥ mcD,x,t,i + γ̄ .

It is a contradiction since γ̄ > 0. Therefore, αt(D + mcD,x,ξt1t, ω) ≥ x for all ω ∈ P t
i .

Sufficiency. Since for all ω ∈ P t
i and η > 0, αt(D + mcD,x,t,i1t − η1t, ω) < x,

we have mcD,x,t,i <= inf{c ∈ R : D + c1{t} ∈ Dt,i
x }.

On the other hand, since for all ω ∈ P t
i and η > 0, αt(D + mcD,x,t,i1t, ω) ≥ x,

it implies that mcD,x,t,i >= inf{c ∈ R : D + c1{t} ∈ Dt,i
x }. Finally,

mcD,x,t,i = inf{c ∈ R : D + c1{t} ∈ Dt,i
x } .

Definition 5.0.8. A basic dynamic acceptability index is called ADCAI if it satisfies

the following two properties:

(O9) Quasi-concavity. If αt(D, ω) ≥ x and αt(D
′, ω) ≥ x for some t ∈ T , ω ∈ Ω,

D, D′ ∈ D, and x ∈ (0, +∞], then αt(λD + (1 − λ)D′, ω) ≥ x for all λ ∈ [0, 1];

(O10) Dynamic consistency. Given two positions D, D′ ∈ D satisfying Dt(ω) =

D′
t(ω) for all ω ∈ Ω, if there exists a constant x ∈ (0, +∞) and t ∈ T such that

MCD,x,t+1 = MCD′,x,t+1, then MCD,x,t = MCD′,x,t.
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Definition 5.0.9. A family of sets of probability measures (Ux)x∈(0,+∞) is called in-

creasing if condt,i(Ux) ⊇ condt,i(Uy), for all x ≥ y > 0, t ∈ T and P t
i ∈ Υt.

Now, we shall introduce the representation theorem for ADCAIs in terms of a

sequence of dynamic consistent sets of probability measures3.

Theorem 5.0.3. A function α is an ADCAI if and only if there exists an increas-

ing sequence of closed and convex dynamic consistent sets of probability measures

(Ux)x∈(0,+∞) such that ρx
t (D) defined as

ρx
t (D) := max

P∈Ux

EP[ − T∑
s=t

Ds|Ft

]
, (5.4)

is continuous with respect to x, and

αt(D) = sup{x ∈ (0, +∞) : ρx
t (D) ≤ 0} . (5.5)

Proof. Sufficiency. We shall show that α defined in (5.5) satisfies the properties

(O1)-(O10).

First, note that since (Ux)x∈(0,+∞) is increasing, ρx defined in (5.4) is increasing

with respect to x as well.

(O1) – adaptiveness, (O2) – independence of the past, and (O3.1) are similar

to the corresponding proof in Theorem 3.4.2.

We show that α satisfies (O3.2). If αt(D,ω) ∈ (0, +∞) for some t ∈ T , D ∈ D

and ω ∈ Ω, then, for all constant c > 0, (O3.1) implies,

αt(D + c1{t}, ω) ≥ αt(D,ω) .

Denote by xω
0 := αt(D, ω), we have xω

0 ∈ (0, +∞). If αt(D+c1{t}, ω) = αt(D,ω) = xω
0 ,

since ρx is an increasing and continuous function on (0, +∞) with respect to x, by

3We refer to Definition A.0.7.
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(5.5) and Lemma B.0.2,

ρ
xω
0

t (D + c1{t}, ω) = ρ
xω
0

t (D, ω) = 0 .

By (H6) – translation invariance of ρ, we know that the above equation can not hold

true. Therefore, αt(D + c1{t}, ω) > αt(D, ω) for all constant c > 0 and (O3.2) holds.

For all t ∈ T and s ≥ t,

αt(1{s}) = sup{x ∈ (0, +∞) : ρx
t (1{s}) ≤ 0}

= sup{x ∈ (0, +∞) : max
P∈Ux

EP[ − 1|Ft

]
≤ 0}

= sup{x ∈ (0, +∞) : −1 ≤ 0} = ∞ .

Hence, (O4) – arbitrage consistency holds true.

Next, we show that α satisfies (O5). For all t ∈ T , P t
i ∈ Υt, ω, ω̄ ∈ P t

i and

s ≥ t, by (H8), we have ρx
t (−1{s}1{ω̄})(ω) > 0 for all x ∈ (0, +∞). By (5.5), we know

αt(−1{s}1{ω̄}, ω) = 0.

(O6) – scale invariance, and (O7) – translation invariance are similar to the

corresponding proof in Theorem 3.4.2.

We show that α satisfies (O8) – right continuity. By (O3) – strict monotonicity,

(O8) holds when αt(D, ω) = +∞. When αt(D,ω) ∈ [0, +∞), if lim
c→0+

αt(D+c1{t}, ω) ̸=

αt(D, ω), by (O3.1), there exists a positive sequence (cn)∞n=1 with lim
n→∞

cn = 0+ and

ϵ > 0, such that

αt(D + cn1{t}, ω) > αt(D, ω) + ϵ, (5.6)

for all n ∈ N. Denote a := αt(D, ω). (5.5) gives

a = sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ 0} ,

which implies

ρ
a+ ϵ

4
t (D, ω) > 0 . (5.7)
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Put an := αt(D + cn1{t}, ω), we have

an = sup{x ∈ (0, +∞) : ρx
t (D + cn1{t}, ω) ≤ 0} .

By (H4) – translation invariance of ρx
t ,

an = sup{x ∈ (0, +∞) : ρx
t (D, ω) ≤ cn} .

Then, for all n ∈ N,

ρ
an− ϵ

4
t (D,ω) ≤ cn .

Since lim
n→∞

cn = 0+, by (5.7), there exists N ∈ N, such that 0 < cN < ρ
a+ ϵ

4
t (D,ω).

Then,

ρ
a+ ϵ

4
t (D,ω) > cN ≥ ρ

aN− ϵ
4

t (D, ω) .

Since ρx
t (D,ω) is a continuous and increasing function with respect to x,

a +
ϵ

4
≥ aN − ϵ

4
,

which implies,

a + ϵ > a +
ϵ

2
≥ aN .

Hence,

αt(D, ω) + ϵ > αt(D + cN1{t}, ω) ,

which contradicts (5.6). Therefore,

lim
c→0+

αt(D + c1{t}, ω) = αt(D, ω) .

(O9) – quasi-concavity is similar to the corresponding proof in Theorem 3.4.2.

Last, we show that α satisfies (O10). Given two positions D,D′ ∈ D satisfying

Dt(ω) = D′
t(ω) for all ω ∈ Ω, if there exists a constant x ∈ (0, +∞) and t ∈ T such



91

that MCD,x,t+1 = MCD′,x,t+1, by Lemma 5.0.3, for each P t+1
i ∈ Υt+1 and η > 0,

αt+1(D + mcD,x,t+1,i1{t+1}, ω) ≥ x, αt+1(D + mcD,x,t+1,i1{t+1} − η1{t+1}, ω) < x ,

αt+1(D
′ + mcD,x,t+1,i1{t+1}, ω) ≥ x, αt+1(D

′ + mcD,x,t+1,i1{t+1} − η1{t+1}, ω) < x ,

By (5.5), for ω ∈ P t+1
i ,

sup{y ∈ (0, +∞) : ρy
t+1(D + mcD,x,t+1,i1{t+1}, ω) ≤ 0} ≥ x . (5.8)

If there exists ω̄ ∈ P t+1
i such that ρx

t+1(D+mcD,x,t+1,i1{t+1}, ω̄) > 0, by the continuity

of ρx with respect to x ∈ (0, +∞), we know there exists ϵ > 0 such that ρx−ϵ
t+1 (D +

mcD,x,t+1,i1{t+1}, ω̄) > 0, which implies

sup{y ∈ (0, +∞) : ρy
t+1(D + mcD,x,t+1,i1{t+1}, ω̄) ≤ 0} ≤ x − ϵ < x .

The above inequality contradicts (5.8). Hence, for all ω ∈ P t+1
i ,

ρx
t+1(D + mcD,x,t+1,i1{t+1}, ω) ≤ 0 .

By (H4) – translation invariance of ρx, it follows that

ρx
t+1(D,ω) ≤ mcD,x,t,i+1 . (5.9)

Since αt+1(D + mcD,x,t+1,i1{t+1} − η1{t+1}, ω) < x for all η > 0, by (5.5),

sup{y ∈ (0, +∞) : ρy
t+1(D + mcD,x,t+1,i1{t+1} − η1{t+1}, ω) ≤ 0} < x ,

which implies

ρx
t+1(D + mcD,x,t+1,i1{t+1} − η1{t+1}, ω) > 0 ,

for all η > 0. Hence, by (H4) – translation invariance of ρx, it follows that

ρx
t+1(D, ω) > mcD,x,t,i(ω) − η .
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Take η → 0+, we have ρx
t+1(D, ω) ≥ mcD,x,t+1,i. Together with (5.9), ρx

t+1(D, ω) =

mcD,x,t+1,i. Same with position D′, we have ρx
t+1(D

′, ω) = mcD,x,t+1,i. The argument

holds true for all P t+1
i ∈ Υt+1. Hence, for all ω ∈ Ω,

ρx
t+1(D,ω) = ρx

t+1(D
′, ω) .

Since Dt(ω) = D′
t(ω) for all ω ∈ Ω, by (H7) – dynamic consistency of ρx,

ρx
t (D,ω) = ρx

t (D
′, ω) ,

for all ω ∈ Ω.

Denote m(ω) := ρx
t (D,ω) = ρx

t (D
′, ω), then ρx

t (D, ω) − m(ω) = 0. By (H4) –

translation invariance of ρx, ρx
t (D + m1{t}, ω) = 0. Then,

sup{y ∈ (0, +∞) : ρy
t (D + m1{t}, ω) ≤ 0} ≥ x .

By (5.5),

αt(D + m1{t}, ω) ≥ x .

Also, for all η > 0,

ρx
t (D, ω) − m(ω) + η = η .

By (H4) – translation invariance of ρx,

ρx
t (D + m1{t} − η1{t}, ω) = ρx

t (D, ω) − m(ω) + η = η > 0 .

By the continuity of ρx with respect to x ∈ (0, +∞), there exists ϵ > 0 such that

ρx−ϵ
t (D + m1{t} − η1{t}, ω) > 0 ,

which implies

sup{y ∈ (0, +∞) : ρy
t (D + m1{t} − η1{t}, ω) ≤ 0} ≤ x − ϵ < x .

By (5.5),

αt(D + m1{t} − η1{t}, ω) < x .
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Then, Lemma 5.0.3 indicates that MCD,x,t = m. Same with D′, we have MCD′,x,t =

m = MCD,x,t. (O10) holds true for α.

Finally, we conclude that α satisfies the properties (O1) − (O10). Therefore,

α is an ADCAI.

Necessity. Given an ADCAI α, we define ux
t (D) := MCD,x,t. By Definition

5.0.5 and Definition 5.0.7, for all ω ∈ Ω,

ux
t (D, ω) = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} . (5.10)

We first show that for every x ∈ (0, +∞), the function ux is a dynamic coherent

risk measure given by Definition A.0.8. We only need to show that ux satisfies all

properties (H1)-(H8) in Definition A.0.8.

(H1) – adaptiveness, (H2) – independence of the past, (H3) – monotonicity,

(H4) – translation invariance, (H5) – homogeneity, and (H6) – subadditivity are

similar to the corresponding proof in Theorem 3.4.1.

Now, we show that ux satisfies (H7). Fix t ∈ {0, . . . , T − 1} and D,D′ ∈ D

with Dt = D′
t and ux

t+1(D) = ux
t+1(D

′). By definition of ux, we can derive that

MCD,x,t+1 = MCD′,x,t+1 .

By (O10) – dynamic consistency of α,

MCD,x,t = MCD′,x,t ,

which implies

ux
t (D,ω) = ux

t (D
′, ω) .

Next, we show that ux satisfies (H8). For all t ∈ T , P t
i ∈ Υt, ω, ω̄ ∈ P t

i , and

s ≥ t, by (O5) – relevancy of α,

αt(−1{s}1{ω̄}, ω) = 0 , (5.11)
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Assume ux
t (−1{s}1{ω̄}, ω) ≤ 0, by (5.10), it follows

inf{c ∈ R : αt(−1{s}1{ω̄} + c1{t}, ω) ≥ x} ≤ 0 .

Then, for any c̄ > 0, by (O3) – strict monotonicity of α,

αt(−1{s}1{ω̄} + c̄1{t}, ω) ≥ x ,

Let c̄ → 0+, by (O8) – right continuity for α, we conclude

αt(−1{s}1{ω̄}, ω) = lim
c̄→0+

αt(−1{s}1{ω̄} + c̄1{t}, ω) ≥ x > 0 ,

which contradicts (5.11). Therefore,

ux
t (−1{s}1{ω̄}, ω) > 0 .

From all above, we conclude that ux is a dynamic coherent risk measure for all

x ∈ (0, +∞). By Representation Theorem A.0.1 of dynamic coherent risk measure,

there exists a closed, convex and dynamic consistent set of probability measures

Ux ∈ Pe such that

ux
t (D, ω) = max

P∈Ux

EP[ − T∑
s=t

Ds|Ft

]
(ω) . (5.12)

By Definition 5.0.5, Dt,i
x ⊆ Dt,i

y for all x ≥ y > 0. Then, for any D ∈ D,

{c ∈ R : D − c1{t} ∈ Dt,i
x } ⊆ {c ∈ R : D − c1{t} ∈ Dt,i

y }.

Thus,

ux
t (D, ω) = inf{c ∈ R : D + c1{t} ∈ Dt,i

x }

≥ inf{c ∈ R : D + c1{t} ∈ Dt,i
y }

= uy
t (D, ω) .

By (5.12), for any D ∈ D,

max
P∈Ux

EP[ − T∑
s=t

Ds|Ft

]
≥ max

P∈Uy

EP[ − T∑
s=t

Ds|Ft

]
,
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Then, Lemma 4.2.1 and Lemma 4.2.2 indicates that condt,i(Ux) ⊇ condt,i(Uy), for all

x ≥ y > 0 and P t
i ∈ Υt. Then, we know Ux is increasing with respect to x ∈ (0,∞).

Now, we show that for any t ∈ T , x ∈ (0, +∞), ω ∈ Ω and D ∈ D, ux
t (D,ω) is

continuous with respect to x. For convenience, we denote fω,t,D(x) := ux
t (D,ω). By

(5.10),

fω,t,D(x) = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} . (5.13)

We observe that fω,t,D(x) is increasing with respect to x. Denote

cω
0 := sup{c ∈ R : αt(D + c1{t}, ω) = 0} ,

cω
∞ := inf{c ∈ R : αt(D + c1{t}, ω) = +∞} ,

By (O3.2) and (O8), we know αt(D + c1{t}, ω) is right continuous and strictly in-

creasing with respect to c on (cω
∞, cω

0 ). Moreover, (O4) and (O5) imply cω
∞, cω

0 are

finite.

If fω,t,D is not continuous at a point x0 ∈ (0,∞), then there are two distin-

guished cases.

First case, limx→x+
0

fω,t,D(x) ̸= fω,t,D(x0). Since fω,t,D(x) is increasing, there exist a

η > 0 and a sequence {ϵn}∞n=1, such that ϵn → 0+, and fω,t,D(x0 + ϵn) > fω,t,D(x0)+η

for all n ∈ N. By (5.13), it follows

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0 + ϵn} > inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} + η ,

for all n ∈ N. Then,

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0 + ϵn}−
η

2
> inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0}+

η

2
.

Hence, there exist c1, c2 such that

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0 + ϵn} −
η

2
> c1 > c2

> inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} +
η

2
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for all n ∈ N. From the left hand inequality, by (O3) – strict monotonicity of α, we

conclude

αt(D + ci1{t}, ω) < x0 + ϵn, i = 1, 2 ; n ∈ N .

Passing to the limit in the last inequality with n → ∞, we have, for i = 1, 2,

αt(D + ci1{t}, ω) ≤ x0 . (5.14)

On the other hand, since

c1 > c2 > inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} +
η

2
,

we have αt(D + ci1{t}, ω) ≥ x0, for i = 1, 2. Together with (5.14), it follows that

αt(D + c11{t}, ω) = αt(D + c21{t}, ω) = x0, c1 < c2 ,

which contradicts (O3.2) – strict monotonicity for α.

Second case, limx→x−
0

fω,t,D(x) ̸= fω,t,D(x0). Since fω,t,D(x) is increasing, there exists

η > 0 and a sequence {ϵn}∞n=1, such that ϵn → 0+, and fω,t,D(x0 + ϵn) < fω,t,D(x0)−η

for all n ∈ N. By (5.13), it follows that

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0 + ϵn} < inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} − η ,

for all n ∈ N. Then,

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0 − ϵn}+
η

2
< inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0}−

η

2
,

Hence, there exists c3 such that

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0 − ϵn} +
η

2
< c3 <

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} −
η

2
,

for all n ∈ N. From the left hand inequality, we conclude that

αt(D + c31{t}, ω) ≥ x0 − ϵn, n ∈ N .
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Passing to the limit in the last inequality with n → ∞,

αt(D + c31{t}, ω) ≥ x0 . (5.15)

On the other hand, since

c3 < inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} −
η

2
,

we have αt(D + c31{t}, ω) < x0, which contradicts (5.15).

From the above two cases, we know

lim
x→x0

inf{c ∈ R : αt(D + c1{t}, ω) ≥ x} = inf{c ∈ R : αt(D + c1{t}, ω) ≥ x0} ,

which implies

lim
x→x0

ux
t (D, ω) = ux0

t (D,ω) .

Finally, by similar argument as Theorem 3.4.3, we can derive that

αt(D, ω) = sup{x ∈ (0, +∞) : ux
t (D, ω) ≤ 0} .
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CHAPTER 6

EXAMPLES AND APPLICATIONS

In Chapter 1 two classical static acceptability indices were introduced: Gain

Loss Ratio and Risk Adjusted Return on Capital. In this chapter, we will generalize

these static indices to dynamic versions, and we will examine if these dynamic versions

are DCAIs or ADCAIs.

We will present an application of dynamic acceptability indices in the context

of optimal portfolio selection problem. The version of optimal portfolio selection

problem that we address, amounts to dynamic selection of portfolio of financial assets

to maximize expected value of terminal utility of the portfolio. Investors may choose

their optimal portfolios relative to various utility functions. We propose to use dGLR

defined in the next section to discriminate between these optimal portfolios, in the

sense of deciding which utility function is most preferable to be used in the problem

of optimal portfolio.

6.1 Examples and Counterexamples

Gain Loss Ratio (GLR), which was presented in Definition 1.0.2, is a typical

return-to-risk type of performance measure, very popular among practitioners. A

natural generalization of GLR to dynamic framework is defined as follows.

Definition 6.1.1. Dynamic Gain Loss Ratio.

For all t ∈ T and D ∈ D,

dGLRt(D) :=


E[

∑T
s=t Ds|Ft]

E[(
∑T

s=t Ds)
−
| Ft]

, if E[
∑T

s=t Ds | Ft] > 0 ,

0, otherwise ,

(6.1)

where (
∑T

s=t Ds)
− := max{−

∑T
s=t Ds, 0}. By convention, dGLRt(0) = +∞.

Remark 6.1.1. Note that taking T = 1, and letting X = D0 + D1, dGLR0 becomes
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the static GLR given in Definition 1.0.2.

Proposition 6.1.1. dGLR is a normalized and right-continuous dynamic coherent

acceptability index.

Proof. Since dGLRt(1{t}) = +∞ and dGLRt(−1{t}) = 0, we have that dGLR is

normalized.

Next, we show that dGLR is right-continuous. Fixed any t ∈ T and D ∈ D. If

E[
∑T

s=t Ds | Ft] > 0, then for any c > 0, E[
∑T

s=t(D + c1{t})s | Ft] = E[
∑T

s=t Ds | Ft] +

c > 0. Hence,

lim
c→0+

dGLRt(D + c1{t}) = lim
c→0+

E(
∑T

s=t Ds|Ft) + c

E({
∑T

s=t Ds + c}−|Ft)

=
E(

∑T
s=t Ds|Ft)

E({
∑T

s=t Ds}−|Ft)
= dGLRt(D) .

If E[
∑T

s=t Ds | Ft] = 0, dGLRt(D) = 0. For any c > 0, E[
∑T

s=t(D + c1{t})s | Ft] > 0.

Hence,

lim
c→0+

dGLRt(D + c1{t}) = lim
c→0+

E(
∑T

s=t Ds|Ft) + c

E({
∑T

s=t Ds + c}−|Ft)

= lim
c→0+

c

E({
∑T

s=t Ds + c}−|Ft)
= 0 = dGLRt(D) .

If E[
∑T

s=t Ds | Ft] < 0, dGLRt(D) = 0. For some small enough c > 0, we have that

E[
∑T

s=t(D + c1{t})s | Ft] < 0. Hence, limc→0+ dGLRt(D + c1{t}) = 0 = dGLRt(D).

Now, we show that dGLR satisfies (D1)-(D7). Adaptiveness (D1), and in-

dependence of the past (D2) of dGLR follow directly from the definition of dGLR.

Monotonicity (D3), scale invariance (D4), and quasi-concavity (D5) are verified as in

static case with expectation replaced by conditional expectation (for details see [14]).

For any Ft-measurable random variable m, we have

T∑
l=t

(D + m1{s})l =
T∑

l=t

Dl + m =
T∑

l=t

(D + m1{t})l .
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Then,

E(
T∑

l=t

(D + m1{s})l|Ft) = E(
T∑

l=t

(D + m1{t})l|Ft) ,

and

E((
T∑

l=t

(D + m1{s})l)
−|Ft) = E((

T∑
l=t

(D + m1{t})l)
−|Ft) ,

for all t ∈ T , D ∈ D. This proves translation invariance.

Finally we will show that dGLR satisfies version (D7-II) of dynamic consis-

tency. For any t ∈ T and D ∈ D, if Dt(ω) = 0 for all ω ∈ Ω, all we need to prove is

that for each P t
i ∈ Υt,

1P t
i

min
ω∈P t

i

dGLRt+1(D, ω) ≤ 1P t
i
dGLRt(D) ≤ 1P t

i
max
ω∈P t

i

dGLRt+1(D, ω).

Denote by mt,i := max
ω∈P t

i

dGLRt+1(D, ω). If mt,i = +∞, the above right inequality is

obviously satisfied. If mt,i = 0, then dGLRt+1(D, ω) = 0 for all ω ∈ P t
i . By Definition

6.1, we can observe that dGLRt(D,ω) = 0 for all ω ∈ P t
i as well.

If mt,i ∈ (0,∞), we have dGLRt+1(D, ω) ≤ mt,i for all ω ∈ P t
i . By Definition

6.1 of dGLR, for all ω ∈ P t
i ,

E(
T∑

s=t+1

Ds|Ft+1)(ω) ≤ mt,i · E({
T∑

s=t+1

Ds}−|Ft+1)(ω) ,

and since Dt = 0, we have

E(
T∑

s=t

Ds|Ft) = E(
T∑

s=t+1

Ds|Ft) = E(E(
T∑

s=t+1

Ds|Ft+1)|Ft) .

Hence, for all ω ∈ P t
i ,

E(
T∑

s=t

Ds|Ft)(ω) ≤ E
(
mt,iE({

T∑
s=t+1

Ds}−|Ft+1)
∣∣Ft

)
(ω) =mt,iE({

T∑
s=t+1

Ds}−|Ft)(ω)

=mt,iE({
T∑

s=t

Ds}−|Ft)(ω) ,

which implies that dGLRt(D, ω) ≤ mt,i. Then,

1P t
i
dGLRt(D) ≤ 1P t

i
max
ω∈P t

i

dGLRt+1(D, ω) .
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By similar argument, we can show that

1P t
i

min
ω∈P t

i

dGLRt+1(D,ω) ≤ 1P t
i
dGLRt(D) .

Hence, (D7-II) holds true.

Using Corollary 3.2.3, we conclude that dGLR is a DCAI.

We shall demonstrate now, by means of an example, that dGLR does not

satisfy condition (O10) – dynamic consistency of ADCAIs, implying that it is not an

ADCAI. Let us consider a two-period model with four states: Ω = {ω1, ω2, ω3, ω4}.

Assume P is the reference probability measure with P(ω1) = 0.2, P(ω2) = 0.3, P(ω3) =

0.1 and P(ω4) = 0.4. Denote by F = {F0,F1,F2} the filtration. F0 = {∅, Ω}; F2

is generated by the partition

{
{ω1, ω2}, {ω3, ω4}

}
; F2 is generated by the partition{

{ω1}, {ω2}, {ω3}, {ω4}
}

. Two dividend processes D and D′ are shown in Table 6.1

and Table 6.2.

Table 6.1: Dividend Process D

ω D0(ω) D1(ω) D2(ω)

ω1 0.5 1 11

ω2 0.5 1 -5

ω3 0.5 -3 -8

ω4 0.5 -3 3

Table 6.2: Dividend Process D′

ω D′
0(ω) D′

1(ω) D′
2(ω)

ω1 0.5 2.2 2.6

ω2 0.5 2.2 -3

ω3 0.5 -4 25

ω4 0.5 -4 -3

By direct calculation, we have4 MCD,0.5,1(ωi) = MCD′,0.5,1(ωi) = −0.923 for

i = 1, 2 and MCD,0.5,1(ωi) = MCD′,0.5,1(ωi) = 3.001 for i = 3, 4. We also have

MCD,0.5,0(ωi) = 0.375, but MCD,0.5,0(ωi) = 0.649 ̸= MCD,0.5,0(ωi) for i = 1, 2, 3, 4.

Note that D0 = D′
0 = 0.5. Hence, dGLR does not satisfy (O10) – dynamic consistency

of ADCAI, and it is not an ADCAI.

4Recall Definition 5.0.7 for MC
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Taking into account the form of the dynamic acceptability index as in (4.30),

and the form of the static one as in (2.5), the natural question arises: is it possible in

general to ‘dynamize’ a static coherent acceptability index by taking the appropriate

conditional expectation of the cumulative future cash-flow? For example, to dynamize

GLR, we considered the static GLR, and we replaced in it the expectation with

conditional expectation, and the terminal value with the future cumulative cash-flow.

However, this procedure may not lead to desirable results in general, as shown below.

According to the above idea the natural extension of static Risk Adjusted

Return on Capital (RAROC) to a dynamic setup should have the following form:

Definition 6.1.2. Dynamic Risk Adjusted Return on Capital

For all t ∈ {0, 1, . . . , T} and D ∈ D,

dRAROCt(D) =


E(

∑T
s=t Ds|Ft)

− inf
Q∈Q

EQ[
∑T

s=t Ds|Ft]
, when E(

∑T
s=t Ds|Ft) > 0

0, otherwise

with convention that dRAROCt(D) = +∞ if inf
Q∈Q

EQ[
∑T

s=t Ds|Ft] ≥ 0.

As it is seen from Figure 6.1, which represents a numerical example, dRAROC

does not satisfy property (D7), dynamic consistency. In this example, we consider

Q = Pe. Assume that the states are labeled from top to bottom ω1, ω2, . . . , ω8. Note

that, D1(ω1) = 0.2 > 0, i.e. positive cashflow at time t = 1 and state ω1, but

dRAROC1(ω1) = 0.31 < 0.33 = dRAROC2(ω1), as well as dRAROC1(ω1) = 0.31 <

0.32 = dRAROC2(ω2). Thus dRAROC does not satisfy (D7) and hence it is not a

DCAI.

For comparison reasons, we also present in Figure 6.1 the values of dGLR,

which is a DCAI.
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Figure 6.1: dRAROC vs dGLR

6.2 Optimal Portfolio Selection and DCAIs

Optimal portfolio selection problem amounts to determining a strategy for

selection of a mix of financial securities that optimizes a given optimization crite-

rion. Typically, optimization criteria are given in terms of utility functions, and the

objective is to maximize the expected utility of terminal value of the portfolio.

Different utility functions usually give rise to different optimal portfolios. Dy-

namic acceptability indices can be used as a tool to select the ‘best’ optimal portfolio

given a set of utility functions. In this section, we will apply our dGLR to discriminate

between optimal portfolio strategies corresponding to various utility functions.
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The definition of a utility function that we shall use here is the following:

Definition 6.2.1. (cf. [19]) A utility function is a function u : R → R such that it

is twice differentiable, concave, and strictly increasing.

From now on we fix an investment horizon T and a filtered probability space

(Ω, F, P), where F = (Ft, t = 0, 1, . . . , T ) is the relevant filtration.

We consider a financial market consisting of one risky asset, whose price S1 is

an F -adapted process, and the bank account with a constant price process S0(t) = 1

(this corresponds to assuming zero interest rate). A trading strategy (or a portfolio)

H = (H0, H1) is a vector of F-predictable stochastic processes5 Hn = {Hn(t); t =

1, 2, . . . , T}, n = 0, 1.

Assuming zero interest rate, H0(t) should be understood as the amount of

money invested in the bank account from time t − 1 to time t, whereas H1(t) is the

number of units of risky asset S1 that the investor holds from time t − 1 to time t.

Note also that Hn(t) < 0 corresponds to borrowing money from the bank; H1(t) < 0

corresponds to selling short risky asset.

Definition 6.2.2. (cf. [41]) Given a trading strategy H, the value process V =

{Vt; t ∈ T } is a stochastic process defined as

Vt :=


H0(1) + H1(1)S1(0), t = 0

H0(t) + H1(t)S1(t), t ≥ 1 .

(6.2)

Definition 6.2.3. (cf. [41]) For a trading strategy H with the value process V , the

dividend process D = {Dt; t ∈ T } is a stochastic process defined as Dt = Vt − Vt−1

for t = 1, 2, · · · , T with D0 = 0.

5A stochastic process Hn is said to be predictable with respect to the filtration F
if each random variable Hn(t) is measurable with respect to Ft−1 for all t = 1, 2, · · · , T .
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Definition 6.2.4. (cf. [41]) A trading strategy H is said to be self-financing if

Vt = H0(t + 1) + H1(t + 1)S1(t), t = 1, 2, · · · , T − 1 . (6.3)

Intuitively, self-financing means that if no money is withdrawn from or added

to the portfolio between t = 0 and t = T , then any change in the portfolio’s value

must be due to a gain or loss in the investments.

Traditionally, expected utility has been used as a performance measure for

financial portfolios in the following sense.

Definition 6.2.5. (cf. [41]) Given a self-financing trading strategy H, the expected

utility of terminal wealth VT is defined as,

Eu(VT ) =
∑
ω∈Ω

P(ω)u(VT (ω)) ,

where P is the reference probability measure and u is the given utility function.

Denote by H the set of all self-financing trading strategies. Given an ini-

tial wealth v, the optimal portfolio problem is therefore to choose the optimal self-

financing trading strategy H by solving the following optimization problem:

maximize Eu(VT )

subject to V0 = v

H ∈ H

(*)

In each of the following examples, we shall consider a pair of utility functions

and we shall solve the optimization problem (*) to derive two optimal portfolios.

Then, we will apply dGLR to discriminate between the two.

We will denote by (H∗
0 , H

∗
1 ) optimal strategy corresponding to each utility

function. The values of H∗
1 are shown in every example. H∗

0 can be calculated through

H∗
1 and initial wealth V0 using (6.2) and (6.3) under the assumption of self-financing.
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6.2.1 Two-Period Examples.

Example 6.2.1.

Table 6.3: Security Price Process

ω S0(ω) S1(ω) S2(ω) P(ω)

ω1 11 13 20 0.25

ω2 11 13 12 0.25

ω3 11 8 12 0.25

ω4 11 8 6 0.25

In this example, we consider a two-period model with four states: Ω =

{ω1, ω2, ω3, ω4}. The security price process and reference probability measure P are

given in Table 6.3. Assume zero interest rate and the initial wealth V0 = 5. We con-

sider two classical utility functions: exponential utility function u(v) = 1 − exp{−v}

(cf. [16]) and quadratic utility function u(v) = v − 1
2
v2 (cf. [16]).

Solving (*) for the exponential utility by the general optimization method,

we find the optimal investment strategy being given as H∗
1 (1)(ωi) = 0.137, for i =

1, 2, 3, 4; H∗
1 (2)(ωi) = −0.116, for i = 1, 2; H∗

1 (2)(ωi) = 0.116, for i = 3, 4.

Solving (*) for the quadratic utility by the general optimization method, we

find the optimal investment strategy being given as H∗
1 (1)(ωi) = −0.400, for i =

1, 2, 3, 4; H∗
1 (2)(ωi) = 0.160, for i = 1, 2; H∗

1 (2)(ωi) = −0.480, for i = 3, 4.

Table 6.4 and Table 6.5 display the optimal value processes. We would like to

determine which optimization criterion, the one corresponding to exponential utility

or the one corresponding to quadratic utility is more preferred. In other words, we

would like to be able to determine, which of the utility criteria ultimately leads to a

better trade-off between the return and the risk of the optimal portfolio. However,

it does not seem to be possible to make such determination by merely looking at the
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Table 6.4: Optimal Portfolio Value

Process for Exponential Utility

ω V0(ω) V1(ω) V2(ω)

ω1 5.000 5.275 4.466

ω2 5.000 5.275 5.390

ω3 5.000 4.588 5.050

ω4 5.000 4.588 4.357

Table 6.5: Optimal Portfolio Value

Process for Quadratic Utility

ω V ′
0(ω) V ′

1(ω) V ′
2(ω)

ω1 5.000 4.200 5.320

ω2 5.000 4.200 4.040

ω3 5.000 6.200 4.280

ω4 5.000 6.200 7.160

Table 6.6: dGLR Process for Optimal

Portfolio V

ω dGLR0(ω) dGLR1(ω)

ω1 0.000 0.000

ω2 0.000 0.000

ω3 0.000 0.000

ω4 0.000 0.000

Table 6.7: dGLR Process for Optimal

Portfolio V ′

ω dGLR0(ω) dGLR1(ω)

ω1 0.476 0.000

ω2 0.476 0.000

ω3 0.476 2.000

ω4 0.476 2.000

optimal values of the wealth process displayed in tables 6.4 and 6.5. Thus, we need

to use another tool for this purpose. The tool we propose to use is the dGLR.

Recall that dGLR is a dynamic coherent acceptability index. Table 6.6 and

Table 6.7 display values of the dGLR processes corresponding to the two optimal

portfolios V and V ′. By examining these two tables we observe that at each state,

the dGLR for portfolio V ′ is greater than or equal to the dGLR for portfolio V . Hence,

dGLR indicates that for this market conditioning, the optimal portfolio corresponding

to the quadratic utility provides a better trade-off between risk and return than the

one corresponding to the exponential utility.

Example 6.2.2.

In this example, we consider the same model as in Example 6.2.1, but with
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Table 6.8: Security Price Process

ω S0(ω) S1(ω) S2(ω) P(ω)

ω1 11 13 20 0.1

ω2 11 13 12 0.2

ω3 11 8 12 0.3

ω4 11 8 6 0.4

different reference probability measure as shown in Table 6.8. Assume zero interest

rate and the initial wealth V0 = 5. We consider the same pair of utility functions:

exponential utility function u(v) = 1−exp{−v}, and quadratic utility function u(v) =

v − 1
2
v2.

For the exponential utility, the optimal investment strategy is given as

H∗
1 (1)(ωi) = −0.270, for i = 1, 2, 3, 4; H∗

1 (2)(ωi) = 0.157, for i = 1, 2; H∗
1 (2)(ωi) =

0.068, for i = 3, 4, and for the quadratic utility, the optimal investment strategy

is given as H∗
1 (1)(ωi) = −0.215, for i = 1, 2, 3, 4; H∗

1 (2)(ωi) = 0.140, for i = 1, 2;

H∗
1 (2)(ωi) = 0.022, for i = 3, 4.

Table 6.9: Optimal Portfolio Value

Process for Exponential Utility

ω V0(ω) V1(ω) V2(ω)

ω1 5.000 4.460 5.559

ω2 5.000 4.460 4.303

ω3 5.000 5.810 6.082

ω4 5.000 5.810 5.674

Table 6.10: Optimal Portfolio Value

Process for Quadratic Utility

ω V ′
0(ω) V ′

1(ω) V ′
2(ω)

ω1 5.000 4.570 5.551

ω2 5.000 4.570 4.429

ω3 5.000 5.646 5.734

ω4 5.000 5.646 5.602

Table 6.9 and Table 6.10 display the optimal value processes. Similarly to the

previous example, it is not possible to determine which portfolio performs better (as a

combined measure of both return and risk) by just looking across all numbers. Using
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Table 6.11: dGLR Process for Optimal

Portfolio V

ω dGLR0(ω) dGLR1(ω)

ω1 3.664 0.000

ω2 3.664 0.000

ω3 3.664 Inf

ω4 3.664 Inf

Table 6.12: dGLR Process for Optimal

Portfolio V ′

ω dGLR0(ω) dGLR1(ω)

ω1 3.520 0.000

ω2 3.520 0.000

ω3 3.520 Inf

ω4 3.520 Inf

dGLR (displayed in Table 6.11 and Table 6.12), we note that dGLR for portfolio V is

greater than or equal to the dGLR for portfolio V ′. Hence, for this specific example,

dGLR indicates that the optimal portfolio corresponding to the exponential utility

provides a better trade-off between risk and return than the one corresponding to the

quadratic utility.

Conclusion 6.2.1. By using dGLR, Example 6.2.1 indicates that quadratic utility

function gives an optimal portfolio with better performance, whereas Example 6.2.2

shows that exponential utility function gives an optimal portfolio with better perfor-

mance. We conclude that utility function can not be the unique factor in selecting the

optimal portfolio.

6.2.2 Four-Period Binomial Model. The binomial model is an important model

for the price evolution of a risky asset.

At each period there are two possibilities: the asset price either goes up by

the factor u (u > 1) or it goes down by the factor d (0 < d < 1). The probability of

an up move during a period is equal to the parameter p, and the moves over time are

independent of each other.

Example 6.2.3. Consider a four-period binomial model with d = 0.95, u = 1.2,

p = 0.5 and S1(0) = 10. We assume zero interest rate and the initial wealth V0 = 20.
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Two classical utility functions are examined in this example: exponential util-

ity function u(v) = 1 − exp{−v} and logarithmic utility function u(v) = log(v) (cf.

[16]).

As shown in [41], the optimization problem (*) can be solved by the backward

induction method. For utility function u(v) = 1 − exp{−v}, we find the optimal

portfolio to be H∗
1 (t)(ωi) = 13.86

S1(t−1)(ωi)
for all t = 1, 2, 3, 4 and i = 1, 2, · · · , 16. For

utility function u(v) = log(v), we find the optimal portfolio to be H∗
1 (t)(ωi) = 18.75

for all t = 1, 2, 3, 4 and i = 1, 2, · · · , 16.

Similarly to the previous example, by merely looking at the optimal value

processes displayed in Figure 6.2, it is hard to determine which portfolio has better

performance. Using dGLR, we find that at each node displayed in Figure 6.3, the

dGLR corresponding to the logarithmic utility is greater than or equal to the dGLR

corresponding to the exponential utility. Hence, dGLR indicates that the optimal

portfolio selected by logarithmic utility provides a better trade-off between risk and

return than the one corresponding to exponential utility.

Example 6.2.4. We consider another four-period binomial model, but with a different

set of parameters d = 0.92, u = 1.02, p = 0.65 and S1(0) = 10. We still assume zero

interest rate and the initial wealth V0 = 20.

The same pair of utility functions are examined in this example: exponential

utility function u(v) = 1 − exp{−v} and logarithmic utility function u(v) = log(v).

For utility function, we find the optimal portfolio to be H∗
1 (t)(ωi) = −7.67

S1(t−1)(ωi)

for all t = 1, 2, 3, 4 and i = 1, 2, · · · , 16. For utility function, we find the optimal

portfolio to be H∗
1 (t)(ωi) = −9.375 for all t = 1, 2, 3, 4 and i = 1, 2, · · · , 16.

By merely looking across all the numbers the Figure 6.4 (optimal value pro-
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Figure 6.2: Value Processes for Optimal Portfolios

cesses), it is not possible to determine which utility function leads to a better optimal

portfolio. However, by examining the dGLR processes shown in Figure 6.5, we note
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Figure 6.3: dGLR Processes for Optimal Portfolios

that at most nodes, the dGLR corresponding to the exponential utility is greater than

or equal to the dGLR corresponding to the logarithmic utility. Hence, for this spe-

cific example, we conclude that the optimal portfolio corresponding to the exponential
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Figure 6.4: Value Processes for Optimal Portfolios
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Figure 6.5: dGLR Processes for Optimal Portfolios

utility provides a better trade-off between risk and return.

Examples 6.2.3 and 6.2.4 together support Conclusion 6.2.1 that utility func-

tion can not be the unique factor in selecting the optimal portfolio.



115

6.2.3 Discrimination Between Optimal Portfolios Corresponding to Dif-

ferent Risk Aversion Coefficients. Now, we shall apply dGLR to discriminate

between the optimal portfolios corresponding to different risk aversion coefficients for

a certain class of utility functions. The risk aversion is a measure of investor’s general

preference for certainty over uncertainty, defined as follows:

Definition 6.2.6. For a given utility function u(v), the coefficient of relative risk

aversion is defined as,

R(v) = −vu′′(v)

u′(v)
.

We focus on discussion in case of isoelastic utility function u(v) = v1−r

1−r
(cf.

[40]). The relative risk aversion for such utility function is equal to r.

Example 6.2.5. Assume a four-period single stock model with sixteen states given

in Figure 6.6. We assume that at each node the probability for going up and going

down is 0.5. Suppose that the investor starts with an initial wealth V0 = 20.

We find the optimal portfolios that correspond to the relative risk aversion

coefficients r = 3 and r = 9, respectively.

By the backward induction method (see for instance [41] p.153), we can derive

the holdings of assets of the optimal portfolio at each state and time instant:

H1(t) =
St

[(St−Sd
t+1

Su
t+1−St

1−p
p

) 1
r − 1

]
Sd

t+1 − St −
(
Su

t+1 − St

) r−1
r

(
St − Sd

t+1

) 1
r
(

1−p
p

) 1
r

, (6.4)

where St is the stock price at time t, p is the up probability and Su
t+1 (up price) and

Sd
t+1 (down price) are two successive prices.

The values of optimal portfolios are summarized in Figure 6.7. By merely

looking at the table, it does not seem to be possible to determine which utility criteria

ultimately leads to a better trade-off between the return and the risk of the optimal

portfolio.
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We will apply dGLR to analyze the acceptability of this two portfolios. The

computed values of dGLR processes that correspond to these portfolios are displayed

in Figure 6.8. By examining the table we observe that at all states, the dGLR for

portfolio corresponding to r = 9 is greater than the dGLR for portfolio corresponding

to r = 3. Hence, dGLR indicates that for this particular market, the optimal portfolio

corresponding to relative risk aversion coefficient r = 9 provides a better trade-off

between risk and return.

However, as next example will show, a higher risk aversion coefficient does not

necessarily imply a better performance, with performance understood in the sense of

dynamic acceptability indices such as dGLR.

Example 6.2.6. We consider a different stock price evolution as in Figure 6.9, and

a different probabilities of going to an up state to 0.65 and respectively 0.35 of going

to a down state.

Using (6.4), we find the optimal portfolios that correspond to the relative risk

aversion coefficients r = 3 and r = 9. The results are displaced in Figure 6.10.

Similarly as above, by visual inspection of the values of the optimal portfolios,

it is not clear what portfolio is more. However, computing dGLR (see Figure 6.11),

we notice that the dGLR for portfolio corresponding to r = 3 is greater than or equal

to the dGLR of the portfolio corresponding to r = 9. Hence, for this specific example,

dGLR indicates that the optimal portfolio corresponding to r = 3 provides a better

trade-off between risk and return.

Conclusion 6.2.2. Examples 6.2.5 and 6.2.6 imply that risk aversion coefficient can

not be the unique factor in selecting the optimal portfolio (from point of view of ranking

portfolios by a dynamic acceptability index).
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Figure 6.6: Security Price Process
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Figure 6.7: Value Processes for Optimal Portfolios
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Figure 6.8: dGLR Processes for Optimal Portfolios
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Figure 6.9: Security Price Process
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Figure 6.10: Value Processes for Optimal Portfolios
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Figure 6.11: dGLR Processes for Optimal Portfolios
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CHAPTER 7

FUTURE WORK

In this work, we studied dynamic coherent acceptability indices assuming a

finite probability space and a finite discrete time space. An open research problem is

to extend the theory developed here to the case of infinite probability space and/or

continuous time.

Most of our results can be extended in a direct way to the case of general

probability space. This requires techniques of general probability theory to be used.

In particular, one will not be able to work with partitions any more, and the general

theory of filtrations will need to be used instead.

The extension to continuous time space is much more delicate, as this will

need to employ techniques from general theory of stochastic processes.

One of the main research objectives is to construct examples for DCAIs. In

this thesis, we extended GLR to the dynamic setup in a natural way and showed

that the dynamic GLR (dGLR) is indeed a DCAI. Besides GLR, some other coherent

acceptability indices such as AIT, AIW, AIMIN, AIMAX, AIMINMAX, AIMAXMIN

were introduced in [14]. Hence, a natural research problem is to look for their natural

counterparties in dynamic framework, and then examine if these dynamic counterpar-

ties are DCAIs. Inspired by the representation theorem for DCAIs, another way to

construct the examples is to find new examples for dynamically consistent sequences

of sets of probability measures.

As has been recently demonstrated by Cherny and Madan [15] acceptability

indices may play an important role in the area of so called conic finance, which studies,

among others, the questions of formation of bid- and ask- prices in illiquid markets.

Cherny and Madan use static acceptability indices in their approach to conic finance,
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which may lead to pricing, which is inconsistent in time. Therefore, an important

research topic will be to study use of dynamic acceptability indices in conic finance,

with a view at developing the theory of time-consistent pricing and hedging.
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APPENDIX A

DYNAMIC COHERENT RISK MEASURES ACCORDING TO RIEDEL
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In this appendix, we give an overview of DCRMs introduced by F. Riedel in

[42]. The main difference between Riedel’s and our theory on DCRMs is the dynamic

consistency property. Corollary 3.3.1 has shown that our dynamic consistency (A7)

is weaker than Riedel’s (A7-I) (or (H7) in this appendix). Therefore, set of examples

for our theory is richer. More importantly, the weaker dynamic consistency leads

to an if and only if duality between dynamic acceptability indices and dynamic risk

measures.

We assume the same mathematical setup and notations as in Section 3.1. To

avoid technical problems, we also assume zero interest rate, whereas in [42] interest

rate is not necessary to be zero.

Definition A.0.7. A set of probability measures Q ⊂ Pe is dynamic consistent if it

is of full-support6 and for all t ∈ T , X ∈ G,

min
Q∈Q

EQ[X|Ft] = min
Q∈Q

EQ
[
min
M∈Q

EM[X|Ft+1]
∣∣Ft

]
.

We shall mention that the above definition is shown as a lemma in [42], which is

equivalent to the original definition of dynamic consistent set of probability measures

in [42].

Definition A.0.8. Dynamic coherent risk measure is a function ρ : T ×D×Ω → R

that satisfies the following properties:

(H1) Adaptiveness. For all t ∈ T and D ∈ D, ρt(D) is Ft-measurable;

(H2) Independence of the past. For all D, D′ ∈ D and t ∈ T : if Ds(ω) = D′
s(ω)

for all s ≥ t and all ω ∈ Ω, then ρt(D, ω) = ρt(D
′, ω);

(H3) Monotonicity. Given D, D′ ∈ D, if Dt(ω) ≥ D′
t(ω) for all t ∈ T , ω ∈ Ω, then

ρt(D,ω) ≤ ρt(D
′, ω) for all ω ∈ Ω;

6Recall the Definition 4.1.2
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(H4) Translation invariance. ρt(D +m1{s}) = ρt(D)−m for every t ∈ T , D ∈ D,

Ft-measurable random variable m, and all s ≥ t;

(H5) Homogeneity. ρt(λD, ω) = λρt(D, ω) for all λ > 0, D ∈ D, t ∈ T , and

ω ∈ Ω;

(H6) Subadditivity. ρt(D + D′, ω) ≤ ρt(D, ω) + ρt(D
′, ω) for all t ∈ T , D,D′ ∈ D,

and ω ∈ Ω;

(H7) Dynamic consistency. For all times t = 0, . . . , T −1 and positions D, D′ ∈ D

with Dt = D′
t the following holds true: ρt+1(D, ω) = ρt+1(D

′, ω) for all ω ∈ Ω

implies ρt(D,ω) = ρt(D
′, ω) for all ω ∈ Ω;

(H8) Relevancy. For all t ∈ T , P t
i ∈ Υt, ω, ω̄ ∈ P t

i , and s ≥ t,

ρt(−1{s}1{ω̄})(ω) > 0 .

In [42] the author established the following representation theorem for DCRMs

in terms of a closed, convex and dynamic consistent set of probability measures.

Theorem A.0.1. ρ is a dynamic coherent risk measure if and only if there exists a

closed, convex, and dynamic consistent set of probability measures Q ∈ Pe such that

ρt(D) = max
Q∈Q

EQ
[
−

T∑
s=t

Ds

∣∣Ft

]
.
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APPENDIX B

TECHNICAL RESULTS
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We present here some important technical results which are necessary through-

out this thesis.

Lemma B.0.1. Let f be a real-valued function defined on a linear vector space X ,

and let us assuming that B is a subset of X .

(1) If f(x) ≥ c for all x ∈ B, where c ∈ R, then infx∈B f(x) ≥ c. If f(x) ≤ c̃ for all

x ∈ B, where c̃ ∈ R, then supx∈B f(x) ≤ c̃.

(2)

sup
x∈B

(
f(x) + g(x)

)
≤ sup

x∈B
f(x) + sup

x∈B
g(x) ,

inf
x∈B

(
f(x) + g(x)

)
≥ inf

x∈B
f(x) + inf

x∈B
g(x) .

Proof. (1) is a direct result from the definitions of infimum and supremum.

(2) is the direct result of (1) by noting that for all x ∈ B,

f(x) + g(x) ≤ sup
x∈B

f(x) + sup
x∈B

g(x) ,

f(x) + g(x) ≥ inf
x∈B

f(x) + inf
x∈B

g(x) .

Lemma B.0.2. If f is a real valued function, increasing and continuous on an open

interval (a, b), such that

sup{x ∈ (a, b) : f(x) ≤ 0} = x0 ∈ (a, b) ,

then f(x0) = 0.

Proof. If f(x0) < 0, since x0 ∈ (a, b), f(x) is continuous at x0, and there exists

η > 0 such that x0 + η ∈ (a, b) and f(x0 + η) − f(x0) < −1
2
f(x0). This implies that



130

f(x0 + η) < 1
2
f(x0) < 0. Then,

sup{x ∈ (a, b) : f(x) ≤ 0} ≥ x0 + η > x0 .

This contradicts the fact that sup{x ∈ (a, b) : f(x) ≤ 0} = x0. Hence, f(x0) ≥ 0.

If f(x0) > 0, there exists ϵ > 0 such that f(x0 − ϵ) − f(x0) > −1
2
f(x0), which

implies f(x0 − ϵ) > 1
2
f(x0) > 0. Then, since f(x) is increasing,

sup{x ∈ (a, b) : f(x) ≤ 0} ≤ x0 − ϵ < x0 ,

which contradicts the fact that sup{x ∈ (a, b) : f(x) ≤ 0} = x0. Hence, f(x0) = 0.

Finally, we present the Separation Hyperplane Theorem, which we use to prove

the representation theorems for dynamic coherent risk measure and dynamic coherent

acceptability index. For our purpose, we present a simplified version of this theorem,

and for more details, see for instance Chapter 3 in [45].

Definition B.0.9. Let A and B be two subsets of n-dimensional space Rn. The sets

A and B are called strongly separated if there exists a p ∈ Rn such that

inf
x∈A

p · x > sup
y∈B

p · y .

Theorem B.0.2. Let A and B be disjoint nonempty subsets of Rn. If both A and B

are closed and convex, then there exists a nonzero p ∈ Rn that strongly separates A

and B.
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